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ABSTRACT 
         The goal in studies concerning biomarkers in autoimmune diseases is finding 

a marker which fluctuates in correlation with the disease’s severity and settles 

within normal borders after effective treatment. This marker would later be used as 

an efficient tool in diagnosis and analysis of medicine clout. It seems the most 

cogent biomarkers are those measurable in serum or plasma. MS is a neurological 

disease common within the young adult population with a predictable course, often 

leading to life-immersing disability. The prognosis, however difficult and limited, 

is currently possible via diagnostic tests (brain MRI) or clinical information 

(severity and degrees of disability).  Many studies have been conducted in an effort 

to detect an adequate biomarker. It is still often overlooked that a reliable biomarker 

should both be clinically applicable and functional is prognosis; as this is what 

could lead to timely treatment. 
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     INTRODUCTION 

MS (Multiple Sclerosis) is an autoimmune disorder of 

unknown etiology which affects the central nervous system. 

This disease is usually observed in persons aged 20-45 [1-3] 

The disease is most prevalent in European countries and 

possesses average prevalence in Iran. There are four separate 

phenotypes identified for the disease; clinically isolated syn-

drome (CIS), relapsing-remitting MS (RPMS), primary pro-

gressive MS (PPMS), secondary progressive MS (SPMS) 

[4]. Different treatment programs are available for decelerat-

ing the disease’s progress, disabling each attack and alleviat-

ing disturbances; namely the prescription of interferon. 

However, at this point, there is no definite cure for MS [5]. 

MS is a complex disorder with different factors impinging 

its mechanism [6]. 

We have categorized how biomarkers can be beneficial 

to the MS patient below: 

1) Phenotype and severity diagnosis 

2) Determining the course of the disease 

3) Choosing a treatment method and predicting its suc-

cess rate 

4) Analyzing new treatment options 

 

Studying biomarkers relevant to MS is heavily supported 

by MS International Federation and the Autoimmune Dis-

ease Committee. Many breakthroughs have been made in the 

field and the positive effects within the aforementioned cate-
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gories are immediately visible. Studying biomarkers bears 

similarity in significance to the changes of gene expression, 

the disease’s dependence on different biological molecules 

such as free radicals, lipids and peptides which are not per-

ceptible via magnetic resonance imaging [7]. 

 

Biomarker Types in Multiple Sclerosis 

We have grouped MS biomarkers in seven categories: 

1. Biomarkers affecting the immune system 

a. Cytokines and their receptors 

b. Chemokines and their receptors 

c. Antibodies 

d. Biomarkers affecting the complement system 

e. adhesion molecules 

f. molecules affecting cell death 

 

2. Biomarkers damaging the blood-brain barrier 

3. Biomarkers damaging myelin 

4. Stress oxidative biomarkers 

5. Biomarkers damaging axon or nerve cells 

6. Biomarkers increasing the production of astrocytes in 

the brain 

7. Biomarkers restoring myelin 

 

Alternatively, we can differentiate between the bi-

omarkers by categorizing them into positive biomarkers and 

negative biomarkers. Positive biomarkers are either not pro-

duced in a physiological environment or produced in small 

amounts and in particular pathological circumstances. Nega-

tive biomarkers are produced in a physiological environment 

in certain tissues and are targeted at the manifestation of the 

disease. Namely, oligodendrocytes and myelin belong to this 

category. The aforementioned biomarkers are ideal for anal-

ysis before and after the manifestation or before and after 

treatments[8]. 

Immunological markers, markers contributing to the de-

struction and restoration of axon and also stress markers are 

ideal as well. We can prescribe more specific medical treat-

ments and assess their performance using these biomarkers. 

Table 1 expands on the prominence of biomarkers [9]. 

 

Considerations and Challenges in the Credibility of the 

Clinical Use of Biomarkers 

The biomarker must apply to a set of basic rules when 

used in a clinical environment. First, it must be reliably and 

easily measured through a number of precise test. Secondly, 

the biomarker must be unambiguous and sensitive to the 

biology of the disease or its pathogenesis such as its inflam-

matory properties, its degree of nerve damage and ability to 

damage or restore myelin. 

 

Biomarker Classification 

Biomarkers can be classified based on their ability in 

prediction, diagnosis and correlation with the disease, as 

elaborated in as elaborated in Tables 1, 2, and 3. 

 

Diagnostic Biomarkers 

A diagnostic biomarker makes distinctions between dif-

ferent autoimmune diseases and differentiates between the 

healthy and unhealthy patient. This biomarker recognizes the 

probability of occurrence of a destructive nervous disease 

such as clinically isolated syndromes (CIS) [10] or radiolog-

ically isolated syndromes (RTS) [11]. Ideally, assimilated 

with the clinical disorder scale and radiological examination, 

the biomarker can contribute to an increase in sensitivity and 

appropriation. Most studies conducted belong to this class of 

biomarkers (Table 1). They are especially helpful in patients 

exposed to CIS which might later transform into MS. 

 

Biomarkers Related to the Course of the Disease 

Biomarkers differentiate between relapsing patients and 

patients diagnosed with secondary-progressive MS (SPMS). 

Table 1. Biomarkers associated with disease stages and clinical phenotypes 

Biomarker CIS RRMS SPMS PPMS NMO 

CSF OCB 
Predicts 

RRMS 

Present 

in 90% 
 

Less 

frequent 

Less 

frequent 

CD19+ B cells 

in CSF 
Common Common Absent Absent  

CD39+ Treg  Decreased Normal   

CXCL3 Elevated Elevated Norma Norma  

BDNF (CSF)  Highest Elevated Reduced  

Fetuin A   
Active 

SPMS 
  

Neurofilament 

chains (CSF) 

Predicts 

RRMS 
    

NAA (CSF)  Increased Lower   

Vitamin D  High  Low  

binding protein 

Neopterin (urine) 
   

High if 

stable 
 

Aquaporin-4 

antibody 

Predicts NMO 

in LETM 

severe or 

bilateral ON 

Absent   
Present 

in 60–80% 
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In MS patients, these biomarkers contribute to the patho-

physiological mechanism of the disease[12]. Hitherto, in-

flammatory and stress oxidative pointers are expected to 

play a more significant role in the relapse of the disease. On 

the other hand, inactivity of the glia, the restoration of the 

myelin and axon damage point to progressive and therefore, 

destructive syndromes. These biomarkers can otherwise dif-

ferentiate between an MS patient with moderate symptoms 

or severe symptoms (Table 2). 

 

Treatment Response Biomarkers 

Treatment response biomarkers evaluate how effective 

the treatment for the MS patient has been. They also deter-

mine the imminence of treatment failure, making it possible 

to move on to alternative treatment options beforehand. Ki-

netic and dynamic medical biomarkers also belong to this 

class of biomarkers, helping the regulation of the patient’s 

dosage. Another supposed use of these biomarkers is the 

appraisal of the patient’s response to different personalized 

medical treatment. With over ten treatment options available 

for MS, it is crucial that we find the proper blood-based se-

lection to avoid unnecessary side-effects. 

 

Side-Effect Scrutiny Biomarkers 

These biomarkers are advantageous for patients prone to 

progressive, pathological or inflammatory diseases. For in-

stance, the antibodies for human polyomavirus II, formerly 

known as John Cunningham virus, is a biomarker convenient 

for allocating the danger of progressive multifocal leu-

koencephalopathy (PML) in patients treated with Natali-

zumab[13, 14]. 

 

Advantages and Disadvantages of Biomarker Assess-

ment 

MS biomarkers are found in different bodily fluids such 

as urine, blood, cerebrospinal fluid (CSF) and tears. There 

are advantages and disadvantages to each sample. MS waste 

products are seldom inspected, making CSF a fitting choice 

for pathology. There are different approaches to CSF sam-

pling; I. e. markers soluble in both solutions, like cell aggre-

gations. However, CSF sampling is an invasive procedure 

and only applicable for a limited number of times. 

Blood sampling is a fairly simple procedure. However, 

there is an abundance of biomarkers in the blood which can 

be a result of different systematic infections in the body, 

heme catabolism and kidney waste. 

Urine is also another non-invasive sampling procedure. 

The issue with this method is the chronic infections of the 

urethra and bacterial colonizations of the bladder, common 

in most disabled MS patients, which manipulates the results. 

Table 2. Potential biomarkers of disease activity in MS 

Correlate Biomarker 

 Cytokines 

Relapse (+), Disability (+) TNF-α (serum and CSF) 

Relapse (−), Treatment Response IL-10 (serum and CSF) 

Relapse (+) IL-12 (serum and CSF) 

Relapse (+), Treatment Response IL-17 (serum and CSF) 

Relapse (+), Treatment Response IFN-γ 

Disease activity (+) Osteopontin (CSF) 

NMO severity (+) IL-6 (CSF) 

 

IFN=interferon. 

IL=interleukin. 

TNF=tumor necrosis factor. 

 

Table 3. Recently discovered biomarkers 

K2P5.1 Potassium channel affecting T cells 

CCL2 Chemokine 

CXCL10 Chemokine 

IL-8 Chemokine 

Complement C4 fragment Marker of complement activation 

MMP-8 Affects inflammatory cell migration through tissue 

CD56bright NK cells Regulate activated T cells 

25-Hydroxy-vitamin D Has immunomodulatory effects 

Urinary neopterin Marker of macrophage activity 

ILT3 Downregulates immune activity 

Myoinositol MR marker of tissue integrity 

Bri2-23 Neuronal protein 

Fetuin-A Immunoregulatory protease inhibitor 

Pentosidine Marker of tissue damage and inflammation 

Leptin receptor Metabolic and immune pathways 

IL=interleukin. 

ILT=immunoglobulin-like transcript. 

MMP=matrix metalloprotease 
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Plus, some patients with bladder dysfunction use artificial 

hypo-hydration for ejection, which restricts examination [15, 

16]. 

 

Immune Change Biomarker Feedback 

Cytokines and Their Receptors 

Cytokines are intensely examined in MS. As a result of 

inflammation in MS waste, there is an increase in different 

types of cytokines in MS patients. These changes are not 

exclusive to MS patients and can be detected in other in-

flammatory CNS disorders. TH1 inflammatory cytokines 

such as INF Gamma, tumor necrosis factor alpha (TNF al-

pha) and interleukin 12 increase in MS relapse phases [16], 

while anti-inflammatory cytokines like TH2, IL-4, IL-10 and 

TGF Beta correlate with clinical recovery and RRMS pa-

tients [17]. TH17 is a proinflammatory cytokine which 

stands as the gnomon for the IL-17 cell line, able to strongly 

affect a wide spectrum of cells, consequently releasing a 

couple types of inflammatory mediators, the CXL10 and 

CXL1. GN-CSF chemokines, the IL-8 and IL-6[18]. It is 

reported that there is a connection between MS patients and 

the level of active plaques. The IL-17 inflammatory cells 

produce a range of IFN-λ, which makes them pathogens for 

MS and EAE [19, 20]. In fact, the IFN-λ produced by the 

TH1 cells, increase the interference of leukocyte adhesion 

molecules with the endothelial cells of the blood-brain barri-

er, making this region more impenetrable [21]. This cytokine 

also increases the activity of MHCII and MHCI molecules 

on the surface of astrocytes and oligodendrocytes, enhancing 

the reactivity of these cells with immunized cells, probably 

causing cell death [22]. Furthermore, macrophages and mi-

croglia cooperate in the destruction of myelin in MS and 

EAE. We can basically reaffirm that the IFN-λ kills oli-

godendrocytes using apoptosis or necrosis (depending on the 

cell’s maturity) [23]. Hence, most MS treatments focus on 

the suppression of inflammatory responses; I.E. IFN-λ ap-

plied for the inhibition of MHCII for its effects on antigen 

cell surface and the reduction of T cells, via stopping the 

production of IL-2 [24]. It has been conducted that MS 

treatments owe part of their competence to the ability of 

taming the TH17 cells [25, 26]. Sweeney et al. have con-

cluded that the prescription of Interferon Beta for EAE re-

duces IL-17 while increasing IL-27 [27]. 

IL-10 operates as a regulatory cytokine, especially valu-

able in the limitation of inflammatory responses and tissue 

damage and adjusts the immune system. Studies have shown 

that CD4-T cells produce IL-10, making them quite profita-

ble in MS treatment [28, 29]. 

Tumor Necrosis Factor Alpha (TNFα) is another essen-

tial cytokine is modifying the immune system for the 

better[30]. This cytokine is built by TH1, inflammatory mac-

rophages, natural killing cells, mast cells, eosinophils and 

neurons themselves [31]. The TNFα counts as a pathogen for 

EAE and MS [32, 33]. This cytokine breaks the blood-brain 

barrier, activates the microglia cells and inducts apotosis 

cells in MS and EAE [32]. There is a direct correlation be-

tween TNFα levels and severity of MS symptoms [33, 34]. 

Ozensy et al. have demonstrated that there is a higher num-

ber of cells producing TNFα in MS patients than the average 

individual. In another research work by Rentzos et al. in 

1996, it has been established the TNFα witnesses higher 

levels in the cerebrospinal fluid in MS patients. 

 

Chemokines and Their Receptors 

Chemokines are chemotactic cytokines which summon 

immune cells to the lymphoid organs and inflammation 

points. The CCR5 chemokine receptor relates to the relapse 

of the disease accompanied by symptoms [35, 36]; also 

CXCR3 increases in T lymphocytes during relapse as the 

immunohistochemistry autopsy report of some brain parts 

contains active MS waste. This addresses the existence of 

CXCR3 in all impenetrable T lymphocytes [35, 37]. 

In brain samples, the CXCR3+ is abnormal. It has been 

expressed that the retention of T cells and CXCR3+ in MS 

patients leads to the appearance of its ligands (IP-10) [38]. In 

the absence of ligands, the CXCR3 cells go back to their 

normal cycle. Active inflammatory MS waste containing 

CCR5+/CCR1 is evidence for hematogen monocytes abun-

dantly found in perivascular cell spaces (crowding point for 

varied leucocytes) and demyelination borders despite their 

omission in non-inflammatory brain cuts [39]. Chemokines 

and their receptors might be important in the heterogynous 

study of the disease, but more research is in order for cer-

tainty. 

 

Oligoclonal Bands and Antibodies 

Recently, the only biomarker accepted apart from MRI in 

MS diagnosis are called CSF oligoclonal bands (OCB), 

which occur as isolated immunoglobulins via isoelectric 

focusing in 90-95% of MS patients [40]. The persistent and 

remitting presence of OCB in MS patients is a telltale sign of 

an immune response to B lymphocytes in the spine [41]. The 

infusion of the oligoclonal IEF immunoglobulin G (IgG) and 

immune recognition (antibody) of alkali phosphatase is a 

more sensitive and specific approach to MS symptoms [42]. 

This method enables the prediction of a second attack in 

patients with isolated demyelination syndrome and the plau-

sibility of transformation into Clinically Definite Multiple 

Sclerosis (CDMS). The oligoclonal IgM is similarly detecta-

ble in IEF [43]. IgM is the strongest activator for comple-

mentation in demyelination areas in MS and NMO patients 

[44, 45]. Hitherto, the first reports of IgM do not stand as a 

strong prophecy on early conversion into CDMS and its in-

vasion period [46-51]. 

The role of auto-antibody pathology in autoimmune dis-

orders is widely affirmed. Specifically, we highlight MBL 

and glycoprotein oligodendrocyte (MOG) out of the plausi-

ble MS autoantigens responsible for experimental autoim-

mune encephalomyelitis (EAE) because of their positioning 

in the dense MBP myelin and the outer surface of the myelin 

sheath of MOG. Recently, it has been suggested that the 

MBP-exclusive antibodies and IgM antibodies exclusive to 

the outer cell domain of MOG present in CIS patients’ se-

rums are extremely inclined to turn into CDMS [52]. Anti-

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

pt
.iu

m
s.

ac
.ir

 o
n 

20
25

-0
4-

04
 ]

 

                             4 / 10

http://ijpt.iums.ac.ir/
http://ijpt.iums.ac.ir/article-1-387-en.html


Biomarker efficacy in multiple sclerosis diagnosis and treatment  5 
 

 

 
Iranian J Pharmacol Ther. 2019 (September);17:1-10.                               This paper is available online at: http://ijpt.iums.ac.ir 

     

MOG antibodies are more prevalent in MS patients than the 

healthy individual. Akin to the axon damage perceived in 

rats after injection, this antibody causes a boost in demye-

lination and cytotoxicity in the laboratory environment. It is 

not yet known whether this peculiar production of antibodies 

in MS patients is feedback to myelin damage or the cause of 

it [52-54]. More research is needed to actuate the correct 

relationship between these antibodies and pathological or 

clinical parameters [55, 56]. 

Lately, it has become apparent that the Epstein-Barr virus 

(EBV) is a possible environmental factor contributing to the 

development of MS [57]. Although the host range specificity 

of OCB is not yet fully understood and a clear link between 

OCB and MS’ pathogenesis, EBV seems to be a target of 

OCB [58]. In an effort to discover OCB’s specificity range, 

the layout of 37,000 protein expressions were surveyed. Out 

of these, two highly amenable epitopes composed of EBV 

proteins were discovered. In blood samples collected before 

the manifestation of MS, there were higher aggregations of 

antibodies for EBNA and EBNA1 complexes than that of 

healthy people and these aggregations maintained their high 

numbers after MS [59]. There is generally a higher risk for 

MS with antibody aggregations. Teenagers and young adults 

with a history of infectious mononucleosis (a fever-inducing 

illness caused by EBV) are more exposed to MS than indi-

viduals who contract this illness in later years of their lives 

[60]. Apart from EBV [61, 62], HLA-DR15 which is the 

main genetic component of MS also induce EBNA1 anti-

body aggregations [63]. 

Nueromyelitis Optica (NMO) syndrome, is a heterogene-

ous MS subgroup consisting of demyelination and inflam-

mation in the spinal and optical nerves. Based on serologic 

and clinical evidence, it has been concluded that antibody 

autoimmune responses bear greater numbers in NMO pa-

tients [64, 65]. Confirmed immunomodulatory MS ttreat-

ments are ineffective for NMO patients, making treatment 

plans for these patients tremendously exclusive. Precise pri-

mary diagnosis and a strong invasive interference are crucial 

in order to avoid an NMO relapse, as this increases mortality 

rates and disability in MS patients [45, 66]. 

Aquaporin-4 has been identified as the target antigen of 

NMO-IgG. Aquaporin-4 acts in the elemental astrocytic pro-

cesses of the blood-brain barrier and is also the main execu-

tioner of the brain’s hemostasis [67, 68]. NMO is found in 

MS waste in various studies done on different patient popu-

lations [69, 70]. NMO-IgG antibodies are the most-recently 

discovered exclusive biomarkers for MS, first distinguished 

while investigating demyelination diseases affecting CNS. 

They greatly aid in differentiating between NMO and MS 

patients [54, 71]. 

The YKL-40 biomarker is a secreted glycoprotein, also 

known as chitinase-3-like protein (CHI3L1), is a glia-

activation marker mainly produced via astrocyte reaction 

[72, 73]. It can be alternatively be produced by activated 

macrophages, vascular cells, epithelial airways and chondro-

cytes [73]. The serum volume of YKL-14 increases with the 

occurrence inflammatory conditions such as rheumatoid ar-

thritis [74]. The physiological duty of YKL-40 has not come 

to light yet, but there is a theory that it helps in the restora-

tion of inflamed tissues [72]. 

The CXL13 biomarker is a B lymphocyte chemoattract-

ant, making adjustments in secondary lymphoid organs in 

both homeostatic and inflammatory contingencies [75]. They 

are produced by B cell follicles and assist in the formation of 

the germinal center. Its receptor is CXCR5, since it uses ac-

tive B cells and CD4 T cell follicles in its job [76-78]. 

Many studies have shown that the expression of 

CXCL13 witnesses an increase in CIS, RRMS, SPMS and 

PPMS patients in comparison to the healthy control group 

and other neurological patients [79]. This increase is often 

accompanied by the relapse of EDSS and nerve damage [80, 

81]. The CXCL13 is likewise more ubiquitous in RRMS 

patients than other MS patients [81]. 

 

MicroRNAs 

A microRNA is a noncoding RNA molecule containing 

no more than 22 nucleotides serving in RNA silencing, post-

transcriptional gene expression regulation and protein trans-

lation [82, 83]. MicroRNAs play an imperative part in many 

biological processes such as metabolism, apoptosis and an-

giogenesis[84, 85]. Almost 1/3 of all human genes utilize the 

indirect encoding of these molecules [86, 87]. 

MicroRNA profiles have been investigated at length in 

MS patients in many samples such as the peripheral blood 

mononuclear cell (PBMC) [88, 89], blood samples [90] and 

brain damage [91]; all of which have presented the same 

result: the microRNA profile is correlated with Multiple 

Sclerosis [89]. 

A research work was conducted, calculating microRNAs 

expression rates like miR-21, miR-14ba, miR-146a, miR-

146b, miR-150 and miR155 in MS patients as opposed to 

that of the healthy control group. The conclusion was that 

RRMS patients had more notable expression rates of miR-

21, miR146a and miR146b [88]. 

Another study calibrated the expression rate of miR-326 

in PBMC and deduced that the rates correlate with the sever-

ity of MS and the symptoms of rats suffering from experi-

mental autoimmune encephalomyelitis (EAE) [6]. 

In the laboratory, containing the miR-126 resulted in 

lower numbers of TH17 [92]. 

The microRNA can be present in many bodily fluids in-

cluding plasma, serum, urine and saliva [93] and is scruti-

nized as a possible biomarker in many diseases [94, 95]. 

A recent study conducted by the Gandhi group has as-

sessed the miRNA-320a to be the most significant altering 

microRNA in MS patients’ serum. They have also found 

hsa-miR-27a-3p to be the most significant microRNA con-

nected with MS relapses. The miRNA-19 correlates with 

EDSS, with miR-199-5p correlating with associated disabili-

ties [96]. 

 

KIR4.1 Antibodies 

A detailed study examining various antibody responses 

in patients with MS [97] identified IgG1 and IgG3 antibod-
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ies that bind to glial cells in the brain tissues. This glia-

specific immunoreactivity was not found in the sera of pa-

tients who had other neurological disorders. KIR4.1, a potas-

sium channel, was the molecular target of these antibodies. 

This channels helps in maintaining potassium and balancing 

water levels in the body. Antibodies moving against KIR4.1 

were detected in the serum of 186 out of 397 patients with 

MS (about 46%), whereas they were present in the sera of 

less than 1% of patients with other neurological disorders 

(n=329) making it insignificant, and not observed at all in 

healthy individuals. This study determined that KIR4.1 is the 

target of an autoantibody response in some patients with MS 

[97]. KIR4.1 expressed on astrocytes localizes with another 

channel, the aquaporin-4 (AQP4) which was previously ar-

gued to be the target for NMO. NMO-IgGis present in 73% 

of patients with NMO, but absent in the serum of patients 

with MS [64] 

 

TOB1 

Studies have suggested that the polymorphism of TOB1 

is an individual supporting the development of CIS into a 

clinical diagnosis of MS. The TOB1 gene contains the mul-

tiplication of T cells. This gene keeps inclined cells in a non-

reactive state and its decrease leads to a stringent immune 

response [98]. 

 

Osteopontin 

OPN, also known as bone sialoprotein I is a protein en-

coded by the SPP1 gene, expressed from a crowding of cells 

and tissues. OPN operates in a range of physiopathological 

duties, as its seen in the nucleus and cytoplasm of many dif-

ferent types of cells [99, 100]. 

OPN plays a paramount role in nonbone affairs; i.e. 

monocyte adhesion, phagocytosis and cell migration [101, 

102]. It also polarizes TH cells into TH1 and TH2, modify-

ing cytokine expression [103]. 

OPN engages in the advancement of many autoimmune 

diseases such as MS [104-107], rheumatoid arthritis [108, 

109], psoriasis [110] and fungus infections [111]. In MS 

patients, OPN expression accompanies MS damage [112, 

113]. Many studies have also shown that OPN also corre-

lates with severity and relapse of PPMS 

 

Microbiota-Related Lipopeptides 

Gut microbiota intervenes with many immunological 

diseases including MS, inflammatory bowel disease (IBD), 

type I diabetes and rheumatoid arthritis [114-116]. 

When a potent 16s ribosomal RNA was studied with the 

purpose of analyzing gut microbiota’s association with MS 

(n=16) and healthy control groups (n=44), how the RNAs 

change in the presence of MS was revealed. Methanobrevi-

bacter archaea and Akkermansia genera increase and the 

Butyricimonas genera decrease. These changes in the gut 

interfere with the expression of other genes involved in den-

dritic cell maturity, interferon signaling and NF. Patients in 

treatment present signs of an increase in Prevotella and Sut-

terella genera and a decrease in Sarcina genera as opposed to 

patients not being treated. However, in order to confidently 

comment on how gut microbiota acts in MS pathogenesis, 

more studies must be in order [117]. 

 

Complement Biomarkers Profile 

There is no shortage of studies on how the complement 

system could aid in the pathogenesis of MS and therefore, 

how various proteins can carry out as an MS biomarker. 

Their conclusions, however, contradict one another. There is 

a proteomic analysis conducted, scrutinizing complement-

exclusive proteins (I Factor, C3 and Clusterin) and their in-

constancies, usually occurring in the CSF samples of MS 

patients. Lately, the H factor, a complement system regula-

tor, is considered a serum biomarker for detection of the 

disease’s activities. The H factor’s levels are meaningful in 

progressive diseases and patients with a higher rate of re-

lapse [118]. 

 

Adhesion Molecules as Blood-Barrier Disorder Bi-

omarkers 

These adhesion molecules exploring the channels for en-

dothelial cells regulating leukocyte transmigration are path-

ogens for MS [119, 120]. Adhesion molecules can be found 

in the form of activated endothelial cell solution, coenocytes, 

platelets, serum and CSF [121]. It has been determined that 

the plasmatic levels of soluble adhesion molecules (sP-

Selectin, sPECAM-1, sE-Selectin) have increased in RRMS 

patients [122], in comparison to chronic progressive patients. 

Plus, this increase in relapse signifies these molecules as 

clinical markers for the activity of MS. The escalation of 

these intercellular molecules’ levels (sICAM-1) has been 

perceived in MS patients during relapse. A correlation be-

tween sICAM-1 in the cerebrovascular fluid and igG traces 

and RRMS patients has been addressed [123]. A surge in 

circulating vascular cell adhesion molecule-1 (SVCAM-1) 

leads to a decrease in MS waste in patients in treatment, al-

ternatively linked with IFN-β-1a[124]. The first regulation of 

sVCAM-1 happening in the first one to six months of SPMS 

clinically interferes with patients being treated with IFN-β-

1b in months 19-24. The same thing happened in IFN-β-1a 

treatments [125, 126]. 

VLA-4 is more sensitive to predicting treatment results, 

as compared with the boost in VCAM-1 and overall increas-

es in each relapse period [126, 127]. 

MMP9 enzymes work in the destruction of the outer cell 

matrix and the proteolysis of myelin. The MMP9 enzyme 

around the arteries breaks collagen and opens the blood-

brain barrier. This breakage causes inflammatory cells to 

spill into the white section of CNS. When T cells are distrib-

uted in the brain’s white matter, an immune response hap-

pens to almost every molecule in the myelin structure. Mi-

grating B cells are discharged against proteins and lipids 

present in the myelin shell. T cells usually mark regularly-

occurring proteins in the myelin, like MOG, MBP and 

PLP[24]. T cells also secret TNF-α and LT-α cytokines. 

These cytokines produce nitric oxide and Osteopontin, em-

ploying the macrophages, microglia cells and astrocytes 
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[96]. 

The NO free radical is an important mediator in autoim-

mune diseases. NO kills the oligodendrocytes via the micro-

glia. iNOS which catalyzes NO production is found in de-

myelinated areas of the body. TNF-αand IFN-γ encode iNOS 

in the astrocytes, microglia and macrophages. The final re-

sult of antibodies, the complement system, NO and TNF-α is 

an intensive damage to the myelin and further stimulation of 

the macrophages moving to the phagocytosis of larger parts 

of the myelin shell. Osteopontin output by macrophages and 

T cells regulate the increasing of T-helper-1 cytokines such 

as IFN-γ and IL-12 and regulate the reduction of IL-10, a T-

helper-2. T-helper-1 cytokines worsen MS symptoms, while 

T-helper-2 cytokines probably stop platelets from growing 

[128, 129]. 

Karabudak et al. conducted a study in 2004, investigating 

the effects of IFN-β on MMP-9 and TIMP-1 in RRMS pa-

tients in a one year period. MMP-9 levels did not seem to 

present anything meaningful, but TIMP-1 rates increased in 

the course of the disease in a significant manner [130]. 

Garcia Montojo et al. studied 50 MS patients in 2010 

who were being treated with INF-beta within a two-year 

period. MMP9 and TIMP1 levels almost doubled in this 

time. It is thus believed that these two are highly inhabitable 

for INF-β [131]. 

Liuzzi et al. discerned a reverse meaningful relation be-

tween MMP-9 and its containment endogens, TIMP-1 in 

RRMS. This finding confirms that the increase of MMP-9 

and decrease of TIMP-1 in sera levels of MS patients partic-

ipate in BBB destruction and CNS invasion by lymphocyte 

T [132]. 

 

CONCLUSION 

Biomarkers present a wide array of biological infor-

mation concerning MS symptoms. Their analysis acts as a 

guiding light when looking for the right treatment and inves-

tigating its efficiency, in case the researcher is willing to 

closely examine it before, during and after treatment. We 

hope molecular techniques result in more specific and sensi-

tive biomarkers. It is certain that with the engagement of 

biomarkers signifying the disease’s course and activity, we 

are able to prescribe more peculiar medical treatment and 

assess the patient’s response adequately.  
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