Dopa-Responsive Dystonia subsequent to Lamotrigine Administration: Case Reports

HOSSEIN ALI EBRAHIMI* and SAEED EBRAHIMI

For author affiliations, see end of text.

Received October 22, 2012; Accepted November 10, 2012

This paper is available online at http://ijpt.tums.ac.ir

ABSTRACT

Epilepsy is a common neurologic disorder affecting approximately 1% of the population. The prevalence of active epilepsy in Kerman, Iran is 7.87/1000 individuals. The past decade has brought many advances to the treatment of epilepsy, including many new pharmacological agents. Lamotrigine is one of the new antiepileptic drugs. Lamotrigine has many side effects; the most important of which are allergic reactions. In this article, the author reports two cases of dopa-responsive dystonia (DRD) after few months administration of lamotrigine for epilepsy. The cases are two girls (4 and 5 years old) who had seizures and received lamotrigine 50 mg/day. They have been free of seizure after treatment but after some time the dystonic attacks developed. Lamotrigine administration discontinued, but dystonic attacks didn’t disappear. Levodopa/carbidopa was started. After a few days, the dystonic pastures disappeared. In conclusion, lamotrigine may introduce dystonia in susceptible patients. These dystonic attacks might be responsive to levodopa.

Keywords: ????
with dramatic and sustained response to treatment with levodopa. This disorder was first described by Segawa [14]. The most common form of DRD is an autosomal-dominant condition (DYST) caused by mutation of the gene for guanosine triphosphate cyclohydrolase [15].

CASE REPORTS

Case 1

A 5 years old girl who used lamotrigine 50 mg per day due to tonic-clonic seizure and had her first attack of seizure two months before her first visit. After starting lamotrigine, the patient was free from seizure for one year. Dystonic attacks worsened later in the day. Results of physical examinations, brain's MRI scans and hematologic and serologic laboratory tests were normal. Dystonic pasture did not disappear after lamotrigine was discontinued. The dystonic attacks disappeared after two days, when 50 mg per day levodopa/carbidopa was started.

Case 2

A 4 years old girl used lamotrigine 50 mg per day due to complex partial seizure. She had had her first attack of seizure a few months before her first visit. After receiving lamotrigine for two months, dystonic pasture developed in lower limb and then spread to lumbar spine. Dystonic pasture worsened later in the day. Physical examinations, brain's MRI scans, hematologic and serologic laboratory tests were normal. Dystonic pasture did not disappear after lamotrigine was discontinued. The dystonic attacks disappeared after two days, when 50 mg per day levodopa/carbidopa was started.

DISCUSSION

DRDs are a group of disorders that show a good response to levodopa. The causes of these disorders are unknown, but the mutation of a gene is recognized in some studies. Onset of this disease usually happens in the first decade of life starting with foot dystonia, which progresses to involve other body parts, but typically remains more severe in the lower extremities. The severity increases progressively over the first two decades of life, but plateaus with relatively few side effects and no long-term complication [16]. Untreated individuals developed diurnal fluctuations with marked improvement in the morning and worsening in the evening. DRDs are more frequent in female than in males, with a ratio varying from 1 to 4.3:1. Diagnosis of DRD can often be made on clinical grounds [17].

There are reports about DRD induction by diazepam [18], bupropion [19], ceftriaxone [20], rituximab [21], and tetrabenazine [22]. The authors, however, didn’t find any reports about post-lamotrigine conditions.

Lamotrigine is a new antiepileptic agent that is frequently used in epileptic patients with a good tolerability and efficacy. Lamotrigine has side effects, the most common form of DRD is an autosomal-dominant condition (DYST) caused by mutation of the gene for guanosine triphosphate cyclohydrolase [15].

REFERENCES

Dopa-responsive lamotrigine-induced dystonia

12. Risk of Stevens-Johnson syndrome and toxic epidermal 220
15. 12. LaRoche SM, Helmers SL. The new antiepileptic drugs: clinical 223
16. applications. JAMA 2004; 291:615-20. 224
19. rare events under lamotrigine treatment. Epilepsy Behav 2007; 227
20. 11930:476. 228 27.
23. 16. Ichinosha H, Ohye T, Tavarashi E, Seki N, Hori T, Segawa M. 231
25. progressive dystonia with marked diurnal fluctuation caused by 233 29.
26. mutations in the GTP cyclohydrolase 1 gene. Nat Genet 1994; 234
27. 8:230-42. 235
31. and denova GTP cyclohydrolase 1 gene mutations in dopa- 239
33. 19. Hooker EA, Danzl DF. Acute dystonic reaction due to 241
35. 20. Detweiler MB, Harpold GJ. Buproprion-induced acute dystonia. 243
37. 21. Esen I, Demirpence S, Yis U, Kurul S. Cetirizine-induced 245
38. dystonic reaction in a 6-year-old boy. Pediatr Emerg Care 2008; 246 33.
39. 24:627-8. 247
40. 22. Richter A, Gernert M, L"oscher W. Prodystonic effects of 248
41. ritoxizol in an animal model of idiopathic dystonia related to 249 34.
42. increased total power in the red nucleus? Eur J Pharmacol 250
43. 1997; 332:133-41 244
44. 23. Burke RE, Reches A, Traub MM, Ilson J, Swash M, Fahn S. 251
45. Tetrobenazine induces acute dystonic reactions. Ann Neurol 252
46. 1985; 17:200-2. 253
48. lamotrigine-induce toxic epidermolysis in three patients treated 255
49. for bipolar disorder. Pharmacotherapy 2006; 26:609-704 256
50. Zaceara G, Gangew PF, Cinocith M. Central nervous system 257
51. adverse effects of new antiepileptic drugs. Seizure 2008, 17:405- 258
52. 21.
53. Aurlian D, Taubell E, Gynestad L. Lamotrigine in idiopathic 259
54. epilepsy increased risk cardiac death? Acta neurol Scand 2007; 260
55. 116:345.
56. O’Neill A, de Leon J, Two case reports of oral ulcer with lamotrigine 261
57. several weeks after oxcarbazepine withdrawal. Bipolar Disord 2007; 262
58. 9:310-3
59. Cardosa F. Chorea, non genetic causes. Cur Opin Neurol 2004; 263
60. 17:433-6.
61. Ural Au, Avcu F, Gekcil Z, Nerruz O. Leukopenia and 264
62. thrombocytopenia possibly associated with lamotrigine use in a 265
64. Chang CC, Shah IS, Yeh CB, Cross JH. Lamotrigine-associated 266
65. anticonvulsant hypersensitivity syndrome in bipolar disorder. 267
67. Das B, Harris C, Smith DP, Cross JH. Unusual side effects of 268
68. lamotrigine therapy. J Child Neurol 2003;18:479-80
69. Richter A, L"oschmann PA, L"oscher W. The novel antiepileptic 270
70. drug, lamotrigine, exerts prodystonic effects in a mutant hamster 271
74. 51.
75. Siep E, Richter A, L"oscher W, Speckmann EJ, K"ohling R. Sodium 276
76. currents in striatal neurons from dystonic dt(sz) hamsters: altered 277
78. Blurhammer E, Chavez F, Palacios L, Rey E, Pajot N, Dula C. 279
79. Lamotrigine in treatment of 120 children with epilepsy. 280
80. Epilepsia 1994; 35: 359-67
81. Leach MJ, Baxter MG, Critchley MAE. Neurochemical and 282
84.
85. CURRENT AUTHOR ADDRESSES
86. Hossein Ali Ebrahimi, Neurology Research Center, Kerman 87. University of Medical Sciences, kerman, Iran. E-mail:
88. Saeed Ebrahimi, Medical student of Tehran University of Medical 89. Sciences, Tehran, Iran.
90.
91. Published online: January 31, 2013
92.
93.