Aqueous Extract of *Nigella sativa* Seeds Suppresses Testicular Steroidogenesis in Mice Leydig Cells in vitro

SHEIKH A. SAEED, NAHEED ANWAR, Qaiser JABEEN, and Anwar H. GILANI

For author affiliations, see end of text.

Received May 12, 2012; Revised August 27, 2012; Accepted October 9, 2012

ABSTRACT

Nigella sativa (black seed) is an important medicinal herb with folklore use in wide range of diseases. It is well studied for its biological activities. However, there is limited information regarding its effect on the male reproductive system. This study describes the effect of the aqueous extract of *N. sativa* (NSE) on testicular steroidogenesis from mice Leydig cells in vitro. Mice testicular cells were incubated in a media containing either no treatment or NSE or LH alone or combination of LH and NSE. Testosterone was measured by radioimmunoassay. At all doses, NSE significantly ($p < 0.05$) inhibited both basal and LH-stimulated in vitro testosterone secretion. At a dose of 1000 µg, NSE inhibited 52% of basal testosterone and 97% of LH-stimulated testosterone, compared to control (0.32 ± 0.008 ng/ml) and LH alone (0.33 ± 0.01 ng/ml) respectively. Thus, it is concluded that that both the basal and the LH-stimulated secretion of testosterone from Leydig cells are suppressed significantly in the presence of different doses of NSE in vitro. However, further studies are needed to explore the effect of chronic treatment with NSE in male and its potential to be used as a contraceptive in male.

Keywords: *Nigella sativa*, Black seed, Male reproductive system, aqueous extract, Leydig cell, testosterone

The seeds of *Nigella sativa* Lin. (Ranunculaceae), for its different biological activities which includes antioxidants, hepatoprotective [3], nephroprotective, antihypertensive [4], muscle relaxant, bronchodilator medicine for centuries for treatment of many acute as well as chronic conditions worldwide [1,2]. It has been used in the treatment of asthma, diarrhea, indigestion, dizziness, influenza, dyslipidemia, many dermatological conditions and as a diuretic and immune modulator. The seeds contain 36%-38% fixed oils, proteins, alkaloids, saponins, 0.4%-2.5% essential oil, crude fiber, minerals, vitamins, aliphatic alcohols and ketones [1]. Many studies have been conducted on the pharmacological action(s) of *Nigella sativa* seed extract or its active compound(s) on various body systems in vivo or in vitro. The herb has been extensively studied for its effect on...
reproductive system. Moreover, the existing information in this regard is quite scanty and rather contradictory. Significant abortifacent activity of N. sativa seed powder, ethanolic and hexane extracts was demonstrated in rats [20]. However, Prakash et al [21] did not find any anti-fertility activity in aqueous, ethanolic and petroleum ether extracts of the seeds of N. sativa when tested at a dose of 150-200 mg/kg daily in rats on the days 1-7 post-coitum schedule.

There is a growing demand for men to share the burden of responsibility and risks of contraception because of growing population pressures and the increasing dissatisfaction of women in assuming almost all the risks of adequate contraception. A major challenge in this field is that the most of the male contraceptive agents currently in use offer little promise and about 15% of the 200 most commonly prescribed drugs can have adverse effects on male reproduction, either by influencing its hormonal profile or impairing their sexual performance. The discovery of key regulators of gonadal hormones and gametogenesis from black seed may provide opportunities to alter our approaches towards management of contraception.

Since, no data on the effect of N sativa on testicular steroidogenesis is available, we designed this in vitro study to investigate the direct effect of crude aqueous extract on basal and LH-stimulated testicular steroidogenesis by mice Leydig cells.

MATERIALS AND METHODS

Preparation of the crude extract

Dried black seeds of Nigella sativa were purchased from the local market in Karachi. The plant seeds were cleaned of any adulterant materials. NS seeds were ground with an electric grinder into a coarse powder. A measured quantity was soaked in 70% aqueous-methanol (30:70) at room temperature overnight and then filtered. Filter papers and the plant material was again subjected to the same treatment as the first macerate. The combined filtrate was concentrated using a rotary evaporator at 40°C under reduced pressure. Extract was stored at -4°C until used for biological activity.

Leydig cells preparation

Three bulbce male mice (weight 36 ± 2) were used for each experiment. Animals were obtained from the AKU animal facility, where they were maintained under standard conditions of 14-hour light and 10-hour dark cycle.

Direct effect of aqueous extract of Nigella sativa seeds (NSE) on testosterone secretion was studied by

The incubation of Leydig cells as described by Van Damme et al,1974 [22], with minor modifications. Mice were killed by cervical dislocation. Testes were dissected out immediately and de-capsulated. Leydig cells were isolated as described earlier [22]. Leydig cells (80,000/tube) were pre-incubated for 1 h to remove the endogenous testosterone, the media were replaced with either fresh medium or medium containing graded doses of crude aqueous extract of NS seeds (1.0-1000 µg/tube).

Moreover, to test the ability of the extract to modulate stimulated testosterone secretion, samples were challenged with LH (500 µIU/tube) alone or with different doses of NSE (1.0-1000 µg). After 3 h, the incubation reaction was stopped by dipping the tubes in water bath at 60°C for 10 min. Samples were kept frozen until testosterone was measured by highly-specific radioimmunoassay.

Radioimmunoassay

Testosterone was measured in the incubation ground with a highly-sensitive RIA according to WHO protocol, using 1H-labeled testosterone, as tracer. Highly specific antiserum for testosterone was acquired from the Western Institute of Research Laboratories, USA. The bound and unbound fractions were separated by addition of 0.1% activated charcoal. Radioactivity was measured in a scintillation counter.

Statistical analysis

Data were expressed as mean ± S.E.M. Results were analyzed for statistical significance using an independent t test on SPSS. A p value < 0.05 was considered significant.

Significant difference between control and treated groups (p < 0.05)
Nigella sativa and testicular steroidogenesis

RESULTS

Nigella sativa seeds extract was able to inhibit significantly (p < 0.05) both basal and LH-stimulated testicular testosterone secretion in vitro. Moreover, the inhibitory effect of NS seed extract was more pronounced at higher doses.

Effect on basal testicular steroidogenesis

As shown in the Fig 1, basal testosterone production in the cells treated with NS seed extract (1.0–1000 µg/tube) was significantly (p < 0.05) reduced compared to the control. This is due to the fact that these hormones leads to hypogonadism and sterility, a condition that can be treated with specific replacement therapies [30]. Reversible inhibition of these hormones by any external measure may be beneficial as it can be used as a contraceptive. Oral administration of crude ethanol extracts showed significant contraceptive effect when the vehicle was testosterone stimulated (500 µIU) testosterone production. The seed extract on testicular steroidogenesis have yet been studied in reproductive organs but also suppresses spermatogenesis at the spermatocyte stage. However, similar changes in the reproductive hormones of the treated animals was not observed [28].

Effect on LH-stimulated testicular steroidogenesis

As shown in Fig 2, administration of different doses of NS seed extract (1.0–1000 µg) caused a significant uptake in the LH/testosterone dose–response curve to variable doses. The potential contraceptive effects of Nigella sativa on the LH (16-500µIU) data, treatment with a contraceptive pill that would prevent the LH 500 µIU response (Fig 2, with maximum effect (97% inhibition) obtained at 1000 µg dose).
ACKNOWLEDGMENTS

This work was supported by funds provided by the Department of Biological & Biomedical Sciences, Aga Khan University. We are grateful to National Hormone and Pituitary Programme California, USA for providing as a gift LH (NIDDK-hLH-B-SIAFP2).

REFERENCES

CURRENT AUTHOR ADDRESSES

Sheikh A. Saeed, Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz, University of Health Sciences, King Abdulaziz Medical City, Jeddah 21423, Kingdom of Saudi Arabia. E-mail: saeed@ksau-hs.edu.sa (Corresponding author)

Naheed Anwar, Dept. of Biological & Biomedical Sciences Aga Khan University, Stadium Road, Karachi.

Qaiser Jabeen, Dept. of Biological & Biomedical Sciences Aga Khan University, Stadium Road, Karachi.

Anwar H. Gilani, Dept. of Biological & Biomedical Sciences Aga Khan University, Stadium Road, Karachi.