Aqueous Extract of *Nigella sativa* Seeds Suppresses Testicular Steroidogenesis in Mice Leydig Cells in vitro

SHEIKH A. SAEEED, NAHEED ANWAR, QAIser JABEEN, and ANWAR H. GILANI

For author affiliations, see end of text.

Received May 12, 2012; Revised August 27, 2012; Accepted October 9, 2012

This paper is available online at http://ijpt.iums.ac.ir

ABSTRACT

Nigella sativa (black seed) is an important medicinal herb with folkloric use in wide range of diseases. It is well studied for its biological activities. However, there is limited information regarding its effect on the male reproductive system. This study describes the effect of the aqueous extract of *N. sativa* (NSE) on testicular steroidogenesis from mice Leydig cells in vitro. Mice testicular cells were incubated in a media containing either no treatment or NSE or LH alone or combination of LH and NSE. Incubations were carried out for three hours in a shaking water bath at 34°C. Testosterone was measured by radioimmunoassay. At all doses, NSE significantly (*p* < 0.05) inhibited both basal and LH-stimulated in vitro testosterone secretion. At a dose of 1000 µg, NSE inhibited 52% of basal testosterone and 97% of LH-stimulated testosterone, compared to control (0.32 ± 0.008 ng/ml) and LH alone (0.33 ± 0.01 ng/ml) respectively. Thus, it is concluded that both the basal and the LH-stimulated secretion of testosterone from Leydig cells are suppressed significantly in the presence of different doses of NSE in vitro. However, further studies are needed to explore the effect of chronic treatment with NSE in male and its potential to be used as a contraceptive in male.

Keywords: *Nigella sativa*, Black seed, Male reproductive system, aqueous extract, Leydig cell, testosterone
reproductive system. Moreover, the existing information in this regard is quite scanty and rather contradictory. Significant abortificant activity of N. sativa seed powder, ethanolic and hexane extracts was demonstrated in rats [20]. However, Prakash et al [21] did not find any anti-fertility activity in aqueous, ethanolic and petroleum ether extracts of the seeds of N. sativa when tested at a dose of 150-200 mg/kg daily in rats on the days 1-7 post-coitum schedule. There is a growing demand for men to share the burden of responsibility and risks of contraception because of growing population pressures and the increasing dissatisfaction of women in assuming almost all the risks of adequate contraception. A major challenge in this field is that the most of the male contraceptive agents currently in use offer little promise and about 15% of the 200 most commonly prescribed drugs can have adverse effects on male reproduction, either by influencing its hormonal profile or impairing their sexual performance. The discovery of key regulators of gonadal hormones and gametogenesis from black seed may provide opportunities to alter our approaches towards management of contraception. Since, no data on the effect of N sativa on testicular steroidogenesis is available, we designed this *in vitro* study to investigate the direct effect of crude aqueous extract on basal and LH-stimulated testicular steroidogenesis by mice Leydig cells.

Materials and Methods

Preparation of the crude extract

Dried black seeds of *Nigella sativa* were purchased from the local market in Karachi. The plant seeds were cleaned of any adulterant materials. NS seeds were ground with an electric grinder into a coarse powder. A measured quantity was soaked in 70%, aqueous alcohol (30:70) at room temperature by cold maceration for a total of 3 days. Thereafter, the filtrate was collected through Whatman's qualitative grade 1 filter papers and the plant material was again subjected to the same treatment as the first macerate. The combined filtrate was concentrated using a rotary evaporator at 40°C under reduced pressure. Extract was stored at –4°C until used for biological activity.

Leydig cells preparation

Three bulbce male mice (weight 36 ± 2) were used for each experiment. Animals were obtained from the AKU animal facility, where they were maintained under standard conditions of 14-hour light and 10-hour dark cycle.

Direct effect of aqueous extract of Nigella sativa seeds (NSE) on basal testosterone secretion by mice Leydig cells in vitro

Significant difference between control and treated groups (p < 0.05)

Since, no data on the effect of *N. sativa* on testicular steroidogenesis is available, we designed this *in vitro* study to investigate the direct effect of crude aqueous extract on basal and LH-stimulated testicular steroidogenesis by mice Leydig cells.

Radioimmunoassay

Testosterone was measured in the incubation ground with an electric grinder into a coarse powder. A measured quantity was soaked in 70%, aqueous alcohol (30:70) at room temperature by cold maceration for a total of 3 days. Thereafter, the filtrate was collected through Whatman’s qualitative grade 1 filter papers and the plant material was again subjected to the same treatment as the first macerate. The combined filtrate was concentrated using a rotary evaporator at 40°C under reduced pressure. Extract was stored at –4°C until used for biological activity.

Leydig cells preparation

Three bulbce male mice (weight 36 ± 2) were used for each experiment. Animals were obtained from the AKU animal facility, where they were maintained under standard conditions of 14-hour light and 10-hour dark cycle.

Direct effect of aqueous extract of Nigella sativa seeds (NSE) on basal testosterone secretion by mice Leydig cells in vitro

Significant difference between control and treated groups (p < 0.05)

Since, no data on the effect of *N. sativa* on testicular steroidogenesis is available, we designed this *in vitro* study to investigate the direct effect of crude aqueous extract on basal and LH-stimulated testicular steroidogenesis by mice Leydig cells.

Radioimmunoassay

Testosterone was measured in the incubation ground with an electric grinder into a coarse powder. A measured quantity was soaked in 70%, aqueous alcohol (30:70) at room temperature by cold maceration for a total of 3 days. Thereafter, the filtrate was collected through Whatman’s qualitative grade 1 filter papers and the plant material was again subjected to the same treatment as the first macerate. The combined filtrate was concentrated using a rotary evaporator at 40°C under reduced pressure. Extract was stored at –4°C until used for biological activity.

Leydig cells preparation

Three bulbce male mice (weight 36 ± 2) were used for each experiment. Animals were obtained from the AKU animal facility, where they were maintained under standard conditions of 14-hour light and 10-hour dark cycle.

Direct effect of aqueous extract of Nigella sativa seeds (NSE) on basal testosterone secretion by mice Leydig cells in vitro

Significant difference between control and treated groups (p < 0.05)

Since, no data on the effect of *N. sativa* on testicular steroidogenesis is available, we designed this *in vitro* study to investigate the direct effect of crude aqueous extract on basal and LH-stimulated testicular steroidogenesis by mice Leydig cells.

Radioimmunoassay

Testosterone was measured in the incubation ground with an electric grinder into a coarse powder. A measured quantity was soaked in 70%, aqueous alcohol (30:70) at room temperature by cold maceration for a total of 3 days. Thereafter, the filtrate was collected through Whatman’s qualitative grade 1 filter papers and the plant material was again subjected to the same treatment as the first macerate. The combined filtrate was concentrated using a rotary evaporator at 40°C under reduced pressure. Extract was stored at –4°C until used for biological activity.

Leydig cells preparation

Three bulbce male mice (weight 36 ± 2) were used for each experiment. Animals were obtained from the AKU animal facility, where they were maintained under standard conditions of 14-hour light and 10-hour dark cycle.

Direct effect of aqueous extract of Nigella sativa seeds (NSE) on basal testosterone secretion by mice Leydig cells in vitro

Significant difference between control and treated groups (p < 0.05)

Since, no data on the effect of *N. sativa* on testicular steroidogenesis is available, we designed this *in vitro* study to investigate the direct effect of crude aqueous extract on basal and LH-stimulated testicular steroidogenesis by mice Leydig cells.

Radioimmunoassay

Testosterone was measured in the incubation ground with an electric grinder into a coarse powder. A measured quantity was soaked in 70%, aqueous alcohol (30:70) at room temperature by cold maceration for a total of 3 days. Thereafter, the filtrate was collected through Whatman’s qualitative grade 1 filter papers and the plant material was again subjected to the same treatment as the first macerate. The combined filtrate was concentrated using a rotary evaporator at 40°C under reduced pressure. Extract was stored at –4°C until used for biological activity.

Leydig cells preparation

Three bulbce male mice (weight 36 ± 2) were used for each experiment. Animals were obtained from the AKU animal facility, where they were maintained under standard conditions of 14-hour light and 10-hour dark cycle.
RESULTS

Nigella sativa seeds extract was able to inhibit testicular testosterone secretion in vitro. Moreover, the inhibitory effect of *NS* seed extract was more pronounced at higher doses.

Effect on basal testicular steroidogenesis

As shown in the Fig 1, basal testosterone production in the cells treated with *NS* seed extract (1.0–1000 µg) was significantly (p < 0.05) reduced compared to the control in a dose-dependent manner. These data offer insights into possible contraceptive activities of *Nigella sativa* seeds extract on testicular steroidogenesis have yet been explored with maximum effect (97% inhibition) obtained at 1000 µg dose available; these results open new fronts in the reproductive field.

Effect on LH-stimulated testicular steroidogenesis

As shown in Fig 2, administration of different doses of *NS* seed extract (1.0–1000 µg) caused a significant contraceptive effect by reducing basal LH/testosterone dose–response curve to variable doses [22]. Oral administration of crude (*p < 0.05) and a dose-dependent inhibition of LH-stimulated testosterone production in male rats [20]. Since, no data about the effect of *NS* seed extract on testicular steroidogenesis have yet been explored. This study provides the first evidence for a strong contraceptive effect of *N. sativa* seed extract on testicular steroidogenesis indicating a potential contraceptive role.

DISCUSSION

Our data suggest that *N sativa* extract inhibits both basal and LH-stimulated testosterone biosynthesis signaling pathways. The mechanism behind its effect is not clear and further studies are needed to elucidate its further role and mechanism of action. The crude extract of *N. sativa* seeds has been reported to possess calcium channel blocking activity [5] and there is evidence that calcium may be involved in the signaling mechanism [24]. Significant abortificient activity of *N. sativa* seed powder, ethanolic and hexane extract, is demonstrated in women [20,25] and rats [21]. However, Prakash et al. [26] did not find any anti-fertility activity in aqueous, ethanolic and petroleum ether extracts of the seeds of *Nigella sativa* when tested at a dose of 150-200 mg/kg daily in rats on the days 1-7 post-coitum schedule. The volatile oil of *Nigella seeds* inhibits the spontaneous movements of rat and guinea pig uterine smooth muscle and also the oxytocin-induced contractions [27]. A single report in male rats has suggested that seed extract treatment not only causes a general reduction in the size of reproductive organs but also suppresses spermatogenesis at the spermatoocyte stage. However, similar changes in the reproductive hormones of the treated animals was not observed [28].
ACKNOWLEDGMENTS

This work was supported by funds provided by the Department of Biological & Biomedical Sciences, Aga Khan University. We are grateful to National Hormone and Pituitary Programme, California, USA for providing as a gift LH (NIDDK-hLH-B-SIAFP2).

REFERENCES

CURRENT AUTHOR ADDRESSES

Sheikh A. Saeed, Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz, University of Health Sciences, King Abdullah Medical City, Jeddah 21423, Kingdom of Saudi Arabia. E-mail: saeedks@ksau-hs.edu.sa (Corresponding author)

Naheed Anwar, Dept. of Biological & Biomedical Sciences Aga Khan University, Stadium Road, Karachi.

Qaiser Jabeen, Dept. of Biological & Biomedical Sciences Aga Khan University, Stadium Road, Karachi.

Anwar H. Gilani, Dept. of Biological & Biomedical Sciences Aga Khan University, Stadium Road, Karachi.