Study of Efficacy of Aqueous and Methanolic Extract of Green Tea on the Process of Opened Skin Wounds Healing in Male (NMRI) Mice Race

FAEZEH MOSHREFJAVADI¹, PARISA KADANEJADIAN², MOHAMMAD ALI NILFOROOSHZADE³, PARICHEHR YAGHMAEI⁴, and HOMEIRA MARDANI⁵

For author affiliations, see end of text.

Received July 7, 2012; Revised October 23, 2012; Accepted November 8, 2012

This paper is available online at http://ijpt.iums.ac.ir

ABSTRACT

Green tea used for year has a popular cancer preventive activity. Researchers have showed green tea inhibited growth of cancer in the animals. This research has been done with awareness of positives effect of green tea, which is approved by researchers and the importance of treatment of opened skin wound. This work has been done experimentally. There were 56 male mice in 7 different groups. Different dose of water and alcohol such as 50, 150 and 300 μL were injected. After anaesthetizing the mice, skin wound was created on the back of the mice by a 6-mm punch. While the mice in control group were treated by normal saline, water and alcohol extract of green tea was injected around the wound on the back of each mouse. The dimensions of ulcers and the recovery percent of the wound in the 1st, 3rd, 5th, 7th, 10th, 13th and 15th day of study were measured. Furthermore, the needful time for recovery was evaluated. Some histological studies were done as well. Two Specimen of wounds were supplied at 4th, 7th and 15th day of the study. In this way, fibroblasts, inflammation, epithelium and endothelial cell of blood vessels from the wounds were studied. The results show that there are no significant differences among control, water and alcohol groups in recovery processes (p > 0.05). Evaluation of recovery processes showed there were significant differences among these groups on 7th day of study (p < 0.01). Evaluation of recovery processes showed there were significant differences among three injected doses of study (p < 0.001). The degree of differences in fibroblasts, inflammation and epithelium distortion in different days for 6 groups (p < 0.05) was meaningful. According to these findings, although both water and alcohol extracts of green tea speed up the wound healing, there isn’t any difference between the uses of water or alcohol extracts.

Keywords: Green tea, Wound healing, Water and Alcohol extract, Race NMRI

Wound healing, or wound repair, is an intricate process in which the skin (or another organ-tissue) repairs itself after injury. The classic model of wound healing is divided into three or four sequential, yet overlapping phases: hemostasis (not considered a phase by some authors), inflammatory, proliferative and remodeling. Upon injury to the skin, a set of complex biochemical events takes place in a closely orchestrated cascade to repair the damage [1].

Green tea is made from Camellia Sinensis [2]. Leaves of this plant are processed with minimal oxidation. It is mainly used in Asia specifically in China [3-4]. There have been extensive researches on the effects of green tea and results have been surprisingly pleasing. Some of the major potential benefits of green tea include; anti-Cancer properties, increases in metabolic rate, anti-diabetes effect, enhancement of mental alertness, improvement of immune system, improvement of quality of life for HIV-infected

Published online: January 31, 2013
The wound surface was treated with light. The tissues on the opened skin wound healing.

Materials and Methods

In this experimental research, 56 male mice of NMRI race with average weight of 25-35 grams were studied. The mice were held in 7 cages in Professor Torabi Nejad Research Center in Isfahan with light cycle of 12 hours darkness and 12 hours light in 22 ± 2°C. In this period, sufficient water and food were in hand of animals and they were randomly classified to 2 control and experimental groups. Green tea extract was prepared using Soxhlet instrument. The green tea leaves were studied by 24 Isfahan University and were transferred into laboratory. Then using electric mill, they were grinded to a powder. Forty grams of green tea powder was placed into filtration paper and were transmitted to a specific container. In order to produce water extract, 400 milliliters of purified water was added and in order to produce alcoholic extract, 400 milliliters of 85% methanol was added. After producing the extract by Soxhlet, it was dried and concentrated in rotary evaporator and then in 48-hour incubation in 70°C Bormarry. In next stage, 2 g of each extract (alcoholic or aqueous) was solved in 100 mL normal saline and therefore, 2% aqueous or alcoholic extract was achieved.

In order to make a wound in animal, first the mouse became comatose with ether and then its back hair was shaved. After immersing the skin with betiding, with 6-millimeter punch and in accordance to surgery principles, a 6-millimeter wound was developed. The wound depth was full skin thickness and the surgery day was named the day zero. After making the wound, in order to prevent potential putrefaction, 0.2 mg penicillin and 0.2 mg gentamicin were injected. The mice were injected 2% aqueous or alcoholic extract for 7 days, once a day and at 9 am. The amount of 50, 150 or 300 mL of extract were injected in four direction surrounding the wound. All injection were performed by one person. After developing the wound, the mice were classified into 7 groups each 8, as follows:

Group 1 (control): the wound surface of this group was treated by normal saline;

Groups 2, 3 and 4: the wound surface was treated by 50, 150 and 300 mL of 2% aqueous extract respectively;

Group 5, 6 and 7: the wound surface was treated with 50, 150 and 300 mL of 2% alcoholic extract respectively.

For microscopic evaluation, sampling and tissue study was carried out. On days 4, 7 and 15, the mice were killed by smelling ether in air. Then, two samples were taken from wound tissue and surrounding skin which were placed inside 10% Formalin solution. The tissue processing and molding was done by paraffin and wax and the German microtome with firm blade of LElitz to develop width cuts including skin, bed with the thickness of 4 microns. The cuts were painted by Haematoxylin and Eosin (H&E) coloring methods and epithelisation and fibrosis tissue but with the low numbers of vessels and extreme edema.
The tissues with epithelisation, treatment group on the days 1, 3, 5, 7, 10, 13, and 15 low quantity fibrotic tissue, low number of vessels and has been illustrated in Fig 1. There is a meaningful extreme edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema.

All the data were analyzed using one-way ANOVA and SPSS statistical software. The p values < 0.05 were (Table 1).

Considered significant.

RESULTS

There are 150 reports from *in vitro* and *in vivo*. The average wound diameter in control group was *studies in the effects of green tea on skin. The primary* 4.42 ± 1.66 mm, in the group which received the focuses of these studies are the chemical carcinogens or alcoholic extract of green tea was 3.81 ± 1.74 mm, and photo carcinogens in animals [9]. Generally, The in the group which received aqueous extract of green polyphenols which are present in teas are categorized as tea, it was 3.93 ± 1.69 mm. No meaningful difference 166 catechins. Green tea leaves contain six primary catechin between 3 groups was observed (not significant). The compounds: catechin, gallocatechin, epicatechin, average of wound diameter among control and epigallocatechin, epicatechin gallate, as well as

DISCUSSION

Rating 2: The tissues with epithelisation, treatment group on the days 1, 3, 5, 7, 10, 13, and 15. *Rating 3:* The tissues with epithelisation and. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema. The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or and low edema.
apigallocatechin gallate (also referred to as EGCG). Healing [11]. The other researchers showed that polyphenols cause the infusion, contrast and anti-tumor, anti-edema, anti-virus, anti-rationation, anti-T1 propagation in epidermis Keratinocytes [9]. Catkins are oldness, and lowering the blood sugar [7-10]. Chemical also from polyphenol group that have anti-oxidant and structure of these molecules is the polyphenol of green [33] anti-rationation property and have role in prevention of tea which is the beginner of antioxidant theory [11]. EGCG blowing and reducing thrombosis [9]. From seventh EGCG is the primary combination of green tea. Day on, is the propagation stage [17]. On seventh day, in polyphenolitic that has properties like antioxidant, anti-T6 treatment group, the wound surface is reducing in tumor, and anti-mutagenic [9]. The biological and contrast with control group that this shows the epidemiological studies in the past 10 years show that reconstruction stage commencement [14] or in other EGCG can be the preventer of tumor growth in chest, word, the earlier start of revival phase of collagen lung, liver, sweetbread, stomach, pancreas, skin, cyst, Synthesis take place in this stage and collagen groups and prostate [11]. EGCG is the preventer of secretion of with more diameter are constructed and the width link chymotrypsin, tumor necrosis factor alpha and glucose-2 between molecules also change [18]. The collagen yarn 6-phosphate dehydrogenase in liver [11-12]. Causes the wound after healing to look like the tissue In this study, there is not a meaningful difference before wounding and prevents the white and ugly scar. between the alcoholic and aqueous extract of green tea. In addition, increasing blood and oxygen availability to in studied groups. This finding is important for two: Wound location takes place through widening the veins reasons. Firstly, using green tea extract doesn’t have [19]. Researches show that green tea reduces blood any relationship with aqueous or alcoholic treatment. Sugar, blood lipids, blood pressure, heart disease Secondly, in this study, the effect of aqueous and reduction, heart bit and also vein widening [11,20]. This alcoholic variables is excluded. In the current study, on influences on the practical capacity of fibroblasts, fourth day, as the edema stage indicator is considered: Synthesis increase in collagen fibers and increase in the wound treatment process [13], the excess of edema: Wound insistence because of increase in collagen in treatment group is meaningfully less that of control: content and because fibroblasts are responsible for group (p < 0.001). This shows that the green tea makes: Developing collagen. So we can conclude that green tea the edema stage of treatment process faster and (polyphenol, catechin and EGCG) cause the propagation therefore the wounds heal faster. In addition, injecting EGCG and influence the practical capacity of the 2% extract of green tea into mice wound caused: Fibroblasts and increase the synthesis of fibro Collagen meaningful increases in fibrous tissue and reduction in [20]. The higher the injection dose (300 mL), the higher the edema in seventh day of study in comparison to these the meaningful number of fibroblasts [9]. The research control group. This meaningful increase of treatment. of Madham et al. show that catechin polyphenol and group fibrous in considering their role in following: EGCG prevent the collagenase activity against issues are important and indicate the positive effect of Collagens [18]. In fact, Catkin and EGCG prevent the green tea on distribution phase of wound treatment: Action through linking with hydrogen and reaction with process. Hydrophobic with collagens prevent its activity and play 1. Fibroblasts are responsible for synthesis of the collagen registration [18]. Research of Young matrix components of primary outer cell of wound bed: also shows the prevention of collagen destruction 2. Including fibronectin and proteoglicans that provide a: Collagenase activity through setting reactions of proper substrate for immigration and propagation of collagen [19]. The broad studies during past decades show that the 2. The fibroblasts then synthesize the collagens that: Healing process of wound through general and localized 3. Fibroblasts that are exclusive fibroblasts: Neuron and hormonal like cell and vein factors or participate in wound shrinkage through providing: Motion and secretary activities influence the wound contraction force [14]. During granulation, fibronectin develops a proper: EGCG and the properties of antibacterial and antivirus substrate for immigration and growth of cells and: Green tea in order to fasten the healing of wound therefore links with fibroblasts so that wound: EGCG causes the propagation, division, and contraction is developed influentially. In addition, this: Motivation of natural cells growth and does this through fibronectin is a support for fibrillogenesis [16]. Cell division and anti apoptosis division. Also, it Regarding the above-mentioned results, it was indicated: Increases the Keratinocytes survival and influences on that the green tea extract has improved the wound: The propagation and fixing of fibroblasts [20]. The treatment at seventh day that these influences are: Preventing effect of green tea is related to its anti-observed in reduction of wound surface and increase of: Oxidant power. Polyphenols and glycoprotein play the healing percent and also in reduction of required time: Role of scavenger in special conditions and thus it for complete healing. Reduction in edema resulted in: Implements its preventing effects on bacteria and virus speeding the wound stage. In 2004, Bayer and colleagues: Growth. In this regard, preventing effect of green tea show that polyphenols prevent the discharge of gamma: (Camellia Sinensis) and black tea on the bacteria growth interferon and have anti edema, anti oldness and wound: has been shown [21]. It is possible that green tea
improve the healing speed of wound. It has been reported that antibiotic medicine speeds the healing of wounds will lose their integrity and will open. Because the wound by infection control [21]. But in this study the amount of collagen synthesis will exceed the exterior symptoms of infections are not in reconstruction of it [29]. In other hand, vitamin C is control group. Therefore, it seems to be actions other required for construction of veins, immigration of that preventing the wound infection for green tea macrophages and correct function of nutrofiles [30], fastening the wound improvement. Bayat et al. explain Some studies show that green tea is a rich resource of the ultrasound treatment effect and gel on healing the vitamin C and includes 18 amino acids including lysine wound section and they believe that wet wound is the 5and proline [9,12,20]. Lack of vitamin B₆ (pyridoxine) speeding factor of wound healing process. In current damages this phenominal link process. Lack of vitamin study, the wounds were daily wetted by the alcoholic B₂ (riboflavin) disorders the wound healing process and aqueous extract. [29]. In other hand, B group vitamins are cofactors for The experimental studies on animals show that the 361 enzyme reactions and are required for correct function localized usages of epidermal growth factors have an effect of blood cells and construction of antibodies [30]. The 362 important influence on speed of epidermal healing results have shown that green tea includes vitamins B₁, 363 wounds with relative thickness and burnings. The usage of B₂ and B₆ [9,12,20]. Therefore probably we can 364 of this material on human wounds also has similar conclude that mentioned issue is one of the factors 365 effects and its usefulness has been proved [22]. The speeding the healing process in treatment group. 366 epidermal healing is a complex phenomena from which 367. It seems that one of the functions of green tea that the rest epidermal cells are propagated so there will helps the healing of wound is the positive effect of another healthy epidermis. The molecular actions that polyphenols, Catechin, Glycoproteins, EGCG and set the natural epidermal healing are not completely vitamins. The increased speed of healing has many 368, but it seems that the peptide growth factors that 369 effects regarding the economic and hygiene. Higher the act through autocrin or paracrin mechanisms have speed of wound healing, the less the wound infection 370 important role on them [23-25]. In 2003, Chung et al. showed that the green tea extract (EGCG) cause the healing. In all of current study for the first time it was 371 epidemic creationists survival in human. In 2003, showed that green tea extract can speed the wound Bollag et al. proposed cellular propagation and healing the healing process of male mice NMRI skin. 372 of wound through polyphenols of green tea. Many 373 numbers of growth factors are known including the 374 epidermal growth (EGF). This factor is a polypeptide of 375 amino acids that DNA and protein is activated by the 376 mRNA [25]. It has been shown that the peptide growth 377 factors increase significant proliferation of cells in 378 wounds with relative wounds and also increase traction 379 influence on Mesenchyme cells [26]. In fact, the growth 380 factors of exterior peptide will increase other production 381 of growth factors like transforming growth factor which 382 is revealed from plackets and macrophages, indirectly 383 activates the healing and improving the wound [27,28]. 384 Without considering the structure, immediate facing of 385 cells during healing with growth factors of epidermal, 386 increases the epithelial [28]. Kwon et al. stated that 387 EGCG motivates the growth of human hair through 388 proliferation and has Anti-apoptosis effects on DPCs 389 [23]. The histology of wound showed that 390 proliferation of cells increase that is probably because 391 of chemical combination of green tea and epidermal 392 growth factors. 393 In addition, role of vitamins on wound healing 394 process and the relationship of green tea contents with them can be considered. Lack of vitamin C is important 395 in delay of wound healing. In such patients, wound healing in fibroblasi stage is stopped. In this state, even 396 when the number of fibroblasts is natural, they do not 397 produce sufficient collagen. Vitamin C is required for 398 ion link of (OH) with amino acid of proline and lysine and hydroxy-l-lysine, fibrils of collagens will not obtain width links. In extreme Scervy, not only the new 399 EFERENCES

Strodbeck. F. Physicology of wound healing, Clinical Practice.
Mori L, Bellini A, Stacey MA, Schmidt M. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005; 304; 81-90.

CURRENT AUTHOR ADDRESSES

Moshrefjavadi Faezeh, Moshrefjavadi Faezeh, Department of physiology, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran. E-mail: fjavadi.faezeh.moshref@gmail.com (Corresponding author)

Mohammad Ali Nifroooshzade, Department of Biophysics, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Parichehr Yaghmaei, Department of Animal Physiology, Tehran University, Tehran, Iran.

Homeira Mardani, Department of Jaw and Face, Islamic Azad University, Khorasgan, Iran.