Study of Efficacy of Aqueous and Methanolic Extract of Green Tea on the Process of Opened Skin Wounds Healing in Male (NMRI) Mice Race

FAEZEH MOSHREFJAVADI1, PARISA KADANEJADIAN2, MOHAMMAD ALI NILFOROOSHZADE3, PARICHEHR YAGHMAYEI3, and HOMEIRA MARDANI3

Received July 7, 2012; Revised October 23, 2012; Accepted November 8, 2012

This paper is available online at http://ijpt.iums.ac.ir

ABSTRACT

Green tea used for year has a popular cancer preventive activity. Researchers have showed green tea inhibited growth of cancer in the animals. This research has been done with awareness of positives effect of green tea, which is approved by researchers and the importance of treatment of opened skin wound. This work has been done experimentally. There were 56 male mice in 7 different groups. Different dose of water and alcohol such as 50, 150 and 300 µL were injected. After anaesthetizing the mice, skin wound was created on the back of the mice by a 6-mm punch. While the mice in control group were treated by normal saline, water and alcohol extract of green tea was injected around the wound on the back of each mouse. The dimensions of ulcers and the recovery percent of the wound in the 1st, 3rd, 5th, 7th, 10th, 13th and 15th day of study were measured. Furthermore, the needful time for recovery was evaluated. Some histological studies were done as well. Two Specimen of wounds were supplied at 4th, 7th and 15th day of the study. In this way, fibroblasts, inflammation, epithelium and endothelial cell of blood vessels from the wounds were studied. The results show that there are no significant differences among control, water and alcohol groups in recovery processes (p > 0.05). Evaluation of recovery processes showed there were significant differences among these groups on 7th day of study (p < 0.01). Evaluation of recovery processes showed there were significant differences among three injected doses of study (p < 0.001). The degree of differences in fibroblasts, inflammation and epithelium distortion in different days for 6 groups (p < 0.05) was meaningful. According to these findings, although both water and alcohol extracts of green tea speed up the wound healing, there isn’t any difference between the uses of water or alcohol extracts.

Keywords: Green tea, Wound healing, Water and Alcohol extract, Race NMRI

ARTICLE IN PRESS

Published online: January 31, 2013
patients, cardioprotective effects [5-8]. In this study, green tea extracts has been investigated for their effects on the opened skin wound healing.

MATERIALS AND METHODS

In this experimental research, 56 male mice of NMRI race with average weight of 25-35 grams were studied. The mice were held in 7 cages in Professor Torabi Nejad Research Center in Isfahan with light cycle of 12 hours darkness and 12 hours light in 22°C. In this period, sufficient water and food were in hand of animals and they were randomly classified to control and experimental groups. 35 grams of green tea powder was place into 400 milliliter of purified water was added and in order to produce alcoholic extract, 400 milliliters of 85% methanol was added. After producing the extract by Soxhlet, it was dried and concentrated in rotary evaporator and then in 48-hour incubation in 70°C Borrmarry. In next stage, 2 g of each extract (alcoholic or aqueous) was solved in 100 mL normal saline and therefore, 2% aqueous or alcoholic extract was achieved.

In order to make a wound in animal, first the mouse became comatose with ether and then its back hair was shaved. After immersing the skin with betiding, with 6-millimeter punch and in accordance to surgery principles, a 6-millimeter wound was developed. The wound depth was full skin thickness and the surgery day was named the day zero. After making the wound, in order to prevent potential putrefaction, 0.2 mg gentamicin and 0.2 mg penicillin were injected. The amount of 50, 150 or 300 mL of extract were injected in four direction surrounding the wound. All injection were performed by one person. After developing the wound, the mice were classified into 7 groups each 8, as follows:

Group 1 (control): the wound surface of this group was treated by normal saline; **Groups 2, 3 and 4:** the wound surface was treated by 50, 150 and 300 mL of 2% aqueous extract respectively; **Group 5, 6 and 7:** the wound surface was treated with 50, 150 and 300 mL of 2% alcoholic extract respectively.

For macroscopic study, on days 1, 3, 5, 7, 10, 13 and 15, the length measurement method of wound and imaging with digital camera was used for all groups. The development of wounds was assessed and the wounding sizes according to imaging digital camera and size measurement were recorded.

For microscopic evaluation, sampling and tissue study was carried out. On days 4, 7 and 15, the mice were killed by smelling ether in air. Then, two samples were taken from wound tissue and surrounding skin which were placed inside 10% Formalin solution. The tissue processing and molding was done by paraffin and wax and the German microtome with firm blade of LEItz to develop width cuts including skin, bed with the thickness of 4 microns. The cuts were painted by Haematoxylin and Eosin (H&E) coloring methods and edematous cell, fibroblasts and sweating sections were recognized through quality method. The wound improving was determined through rating the pathology parameters as follows:

- **Rating 1:** The tissues with no repeating epithelisation and fibrosis tissue but with the low numbers of vessels and extreme edema.
Table 1. The microscopic study of aqueous and alcoholic extract of green tea on days 4, 7 and 15 based on the inflammation, fibrosis, epithelium and blood vessels.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Days</th>
<th>Control</th>
<th>Aqueous extract</th>
<th>Alcoholic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50 µL</td>
<td>150 µL</td>
<td>300 µL</td>
</tr>
<tr>
<td>Inflammation</td>
<td>4</td>
<td>4.50 ± 0.07</td>
<td>0.01 ± 4.10</td>
<td>0.02 ± 3.50</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.21 ± 0.05</td>
<td>0.2 ± 2.80</td>
<td>0.02 ± 2.50</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.81 ± 0.01</td>
<td>0.03 ± 1.50</td>
<td>0.01 ± 1.2</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>4</td>
<td>4.81 ± 0.01</td>
<td>0.02 ± 4.51</td>
<td>0.01 ± 4.20</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.21 ± 0.01</td>
<td>0.001 ± 1.0</td>
<td>0.081 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.31 ± 0.01</td>
<td>2.0 ± 0.02</td>
<td>0.01 ± 1.62</td>
</tr>
<tr>
<td>Epithelium</td>
<td>4</td>
<td>4.80 ± 0.01</td>
<td>0.01 ± 4.11</td>
<td>0.02 ± 3.80</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.0 ± 0.001</td>
<td>0.02 ± 1.42</td>
<td>0.01 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.0 ± 1.13</td>
<td>1.10 ± 4.92</td>
<td>1.0 ± 4.90</td>
</tr>
<tr>
<td>Blood Vascular</td>
<td>4</td>
<td>4.5 ± 1.10</td>
<td>1.12 ± 4.25</td>
<td>1.12 ± 4.23</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.01 ± 3.5</td>
<td>0.01 ± 3.25</td>
<td>1.10 ± 3.0</td>
</tr>
</tbody>
</table>

Rating 2: The tissues with repeating epithelisation, treatment group on the days 1, 3, 5, 7, 10, 13, and 15 low quantity fibrotic tissue, low number of vessels and has been illustrated in Fig 1. There is a meaningful extreme edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or alcoholic extract did not have a meaningful difference.

Rating 3: The tissues in complete epithelisation and The microscopic results show that edema, fibroblast fibroblast in small limit and also low number of vessels and epithelium amount in mice received aqueous or alcoholic extract and low edema.

Rating 4: The tissues with no edema and the medium number of epithelisation and fibroblast significantly different in groups received aqueous or alcoholic extract and low edema.

Rating 5: The tissues with complete epithelisation, alcoholic extracts when compared with control group (p complete fibrotic tissue development, high number of not significantly different in groups received aqueous or alcoholic extract and low edema.

All the data were analyzed using one-way ANOVA, by SPSS statistical software. The p values < 0.05 were considered significant.

RESULTS

There are 150 reports from in vitro and in vivo studies in the effects of green tea on skin. The primary 4.42 ± 1.66 mm, in the group which received the focuses of these studies are the chemical carcinogens or alcoholic extract of green tea was 3.81 ± 1.74 mm, and photo carcinogens in animals [9]. Generally, The tea, it was 3.93 ± 1.69 mm. No meaningful difference between 3 groups was observed (not significant). The compounds: catechin, gallocatechin, epicatechin, average of wound diameter among control and gallocatechin, epicatechin gallate, as well as

DISCUSSION

Published online: January 31, 2013
apigallocatechin gallate (also referred to as EGCG), healing [11]. The other researchers showed that polyphenols cause the infusion, contrast and anti-tumor, anti-edema, anti-virus, anti-ratification, anti-11 propagation in epidermis Keratinocytes [9]. Catkins are oldness, and lowering the blood sugar [7-10]. Chemical also from polyphenol group that have anti-oxidant and anti-virus properties like anti-edema, anti-oldness and wound reduction, heart bit and also vein widening [11,20]. This alcohols contributes to the propagation of fibroblasts. On seventh day, the edema stage indicator is considered as synthesis increase in collagen fibers and increase in the wound treatment process [13], the excess of edema wound insistance because of increase in collagen in treatment group is meaningfully less that of control content and because fibroblasts are responsible for group (p < 0.001). This shows that the green tea makes developing collagen. So we can conclude that green tea the edema stage of treatment process faster and (polyphenol, catechin and EGCG) cause the propagation therefore the wounds heal faster. In addition, injecting polyphenols and influence the practical capacity of the 2% extract of green tea into mice wound caused fibroblasts and increase the synthesis of fibro Collagen meaningful increases in fibrous tissue and reduction in [20]. The higher the injection dose (300 mL), the higher the edema in seventh day of study in comparison to the, the meaningful number of fibroblasts [9]. The research control group. This meaningful increase of treatment of Madham et al. show that catechin polyphenol and group fibrous in considering their role in following: EGCG prevent the collagenase activity against issues are important and indicate the positive effect of Collagens [18]. In fact, Catkin and EGCG prevent the green tea on distribution phase of wound treatment action through linking with hydrogen and reaction with process. Hydrophobic with collagens prevent its activity and play 1. Fibroblasts are responsible for synthesis of the a role in collagens registration [18]. Research of Young matrix components of primary outer cell of wound bed also shows the prevention of collagen destruction including fibronectin and proteoglicans that provide and collagenase activity through setting reactions of proper substrate for immigration and propagation of cellular signal by EGCG [19].

The broad studies during past decades show that the 2. The fibroblasts then synthesize the collagens that healing process of wound through general and localized development tension power in wound substrate [15]. different factors is under influence [19]. Many different 3. Miofibroblasts that are exclusive fibroblasts. Neuron and hormonal like cell and vein factors or participate in wound shrinkage through providing motion and secretory activities influence the wound contraction force [14]. Location. In this relation, we can point out to study of During granulation, fibronectin develops a proper EGCG and the properties of antibacterial and antivirus substrate for immigration and growth of cells and of green tea in order to fasten the healing of wound therefore links with miofibroblasts so that wound EGCG causes the propagation, division, and contraction is developed influentially. In addition, this motivation of natural cells growth and does this through fibronectin is a support for fibrilligenesis [16]. cell division and anti apoptosis division. Also, it Regarding the above-mentioned results, it was indicated increases the Keratinocytes survival and influences on that the green tea extract has improved the wound [20]. The treatment at seventh day that these influences are preventing effect of green tea is related to its anti-observed in reduction of wound surface and increase of oxidant power. Polyphenols and glycoprotein play the healing percent and also in reduction of required time. role of scavenger in special conditions and thus it for complete healing. Reduction in edema resulted in prevents its effects on bacteria and virus speeding the wound stage. In 2004, Bayer and colleagues-growth. In this regard, preventing effect of green tea show that polyphenols prevent the discharge of gamma-(Camellia Sinensis) and black tea on the bacteria growth interferon and have anti edema, anti oldness and wound has been shown [21]. It is possible that green tea

Published online: January 31, 2013
Green tea effects on wounds healing

to improve the healing speed of wound. It has been reported that antibiotic medicine speeds the healing of wounds will lose their integrity and will open. Because the wound by infection control [21]. But in this study the amount of collagen synthesis will exceed the exterior symptoms of infections are not observed in reconstruction of it [29]. In other hand, vitamin C is control group. Therefore, it seems to be actions other required for construction of veins, immigration of that preventing the wound infection for green tea macrophages and correct function of nutritive factors [30], fastening the wound improvement. Bayat et al. explain Some studies show that green tea is a rich resource of the ultrasound treatment effect and gel on healing the vitamin C and includes 18 amino acids including lysine wound section and they believe that wet is the 357 and proline [9,12,20]. Lack of vitamin B2 (pyridoxine) speeding factor of wound healing process. In current damages this phenomenon link process. Lack of vitamin study, the wounds were daily wetted by the alcoholic B2 (riboflavin) disorders the wound healing process and aqueous extract. [29]. In other hand, B group vitamins are cofactors for healing is a complex phenomena from which. It seems that one of the functions of green tea that the rest epidermal cells are propagated so there will be helps the healing of wound is the positive effect of another healthy epidermis. The molecular actions that polyphenols, Catechin, Glycoproteins, EGCG and set the natural epidermal healing are not completely vitamins. The increased speed of healing has many known, but it seems that the peptide growth factors that effects regarding the economic and hygiene. Higher the act through autocrin or paracrin mechanisms have of wound healing, the less the wound infection shows the importance role on them [23-25]. In 2003, Chung et al. and an increased speed in all the process of wound showed that the green tea extract (EGCG) cause the healing. In all of current study for the first time it was epidermal renovation survival in human. In 2003, shown that green tea extract can speed the wound Bollag et al. proposed cellular propagation and healing the process of male mice NMRI skin. of wound through polyphenols of green tea. Many numbers of growth factors are known including the epidermal growth (EGF). This factor is a polypeptide of 53 amino acids that DNA and protein is activated by the mRNA [25]. It has been shown that the peptide growth factors increase significant proliferation of cells in wounds with relative thickness and burnings. The usage by B group vitamins are cofactors for regeneration and has Anti-apoptosis effects on DPCs [25]. The histology of wound showed that proliferation of cells increase that is probably because of chemical combination of green tea and epidermal growth factors. In addition, role of vitamins on wound healing process and the relationship of growth tea contents with them can be considered. Lack of vitamin C is important in delay of wound healing. In such patients, wound healing in fibroplasis stage is stopped. In this state, even macrophages can not produce sufficient collagen. Vitamin C is required for ion link of (OH) with amino acid of proline and lysine and hydroxy-l-lysine, fibrils of collagens will not obtain width links. In extreme Scurvey, not only the new REFERENCES

CURRENT AUTHOR ADDRESSES

Faezeh Moshrefjavadi, Department of physiology, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran. E-mail: fjavadifaezeh.moshref@gmail.com (Corresponding author)

Parisa Kadanejadian, Department of Biophysics, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Mohammad Ali Nifroooshzade, Department of Dermatology, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Parichehr Yaghmayeri, Department of Animal Physiology, Tehran University, Tehran, Iran.

Nehema Mardani, Department of Jaw and Face, Islamic Azad University, Khorasan, Iran.