Effects of *Pluchea lanceolata* Root Extract on Cisplatin--induced Nausea and Vomiting in Rat Pica Model

NAVEEN GOYAL1*, SURENDRRA KR. SHARMA2

For author affiliations, see end of text.

Received June 12, 2012; Revised September 27, 2012; Accepted November 8, 2012

This paper is available online at http://ijpt.tums.ac.ir

ABSTRACT

Cisplatin is an effective chemotherapeutics against a wide range of cancers. However, it causes significant nausea and vomiting which limit its usefulness. In the present study, the effects of methanolic root extract of *Pluchea lanceolata* (DC.) C. B. Clarke, asteraceae (MPL) was investigated against cisplatin-induced nausea using a rat pica model. In rat pica model, rats react to cisplatin (emetic/nausea stimuli), with altered feeding habits, manifested by increased consumption of kaolin. The pica in rats was measured to quantify cisplatin-induced nausea, and to evaluate the protective effect of pretreatment with MPL given orally. Cisplatin at 3 mg/kg (i.p.) induced significant pica indicated by reduced food intake and increased kaolin consumption, suggesting the presence of nausea/emesis. Cisplatin-induced pica decreased significantly when animals were pretreated with MPL at doses of 400 mg/kg p.o. (p < 0.05). MPL pretreatment decreased cisplatin-induced kaolin intake in the rat model of simulated nausea, suggesting that MPL and/or its active constituent(s) may play a therapeutic role as protective against chemotherapy-induced emesis.

Keywords: Cisplatin, Pica, Pluchea lanceolata, Asteraceae

Chemotherapy regimens for the treatment of cancer are unfortunately better known for their toxicity than for their efficacy. Although some of the toxic effects may typically subsides, only to recur and reach a second peak at approximately 48 to 72 hours after receipt of the nausea and emesis caused by chemotherapy, which are agent [5]. On the basis of the cisplatin model, emesis generally self-limited and seldom life-threatening [1]. Occurring within the first 24 hours has been defined as nausea and vomiting has been commonly reported by acute, and emesis occurring more than 24 hours later patients ever since chemotherapeutic agents were first used to treat cancer [2]. The severity and pattern of a third emetic syndrome, has decreased in recent years. Chemotherapy-induced emesis depend on the specific anticancer drug, is one of the most commonly used and vomiting in the rat model of simulated nausea [3]. Cisplatin-induced nausea and vomiting can be associated with profound psychological, social, physical and economical quality.
of life. The pathophysiology of these symptoms has been partly attributed to oxidant injury to the intestinal epithelium [8,9]. The mucosal injury results in excessive serotonin release from the enterochromaffin cells that could mediate the gastrointestinal adverse effects of chemotherapy and radiotherapy [10-14]. Since the plant material was further size reduced and oxidant injury to the gut may be the primary event stored until further use in an air tight container. The responsible for the gastrointestinal symptoms following powdered material (200 g) was extracted with chemotherapeutic or radiotherapy, we hypothesized that petroleum ether using a Soxhlet apparatus. The defatted pretreatment with an antioxidant should ameliorate these symptoms. Despite advances in antiemetic therapy, nausea and induced nausea/vomiting was evaluated using rat pica. Kaolin was prepared based on earlier reported model of simulated emesis, where emetic stimuli is [21]. Briefly, pharmacological grade kaolin reflected by increasing coagulation times. In present study, the efficacy of a methanolic extract of Pluchea lanceolata (DC.) C. B. Clarke, asteraceae, for protection against cisplatin-induced nausea/vomiting was evaluated using rat pica. Kaolin preparation

Drugs and Chemicals

Cisplatin injection (Cipla, Ltd., India), Kaolin and Methanol (SD Fine-Chem Ltd, India) and all other chemicals were of analytical grades.

Materials and Methods

Animals

Male Wistar strain rats (150-250 g, 3-4 months of age) were procured from the disease-free small animal house of CCS Haryana Agriculture University, Hisar, Haryana, India. The animals were housed at 24 ± 1°C temperature, 45 ± 5% humidity, 12-h light-dark cycle, and left to acclimatize for 1 week before the experiments. Rats were allowed free access to water, standard laboratory rat chow and kaolin, placed in separated containers, continuously available throughout the experiment. Experiments were carried out between 09:00 and 17:00 h. The experimental protocol was approved by the Institutional Animal Ethics Committee, GJUS&T, Hisar, Haryana and the care of the laboratory animals was taken as per the guidelines of CPCSEA, Ministry of Forests and Environment, Government of India.

Preparation of extracts of Pluchea lanceolata

The shade dried roots of the plant Pluchea lanceolata (DC.) C. B. Clarke, asteraceae, was collected from waste land of Dist. Hisar and Sirsa, Haryana, India, in October 2009 and authenticated by Ram Prasad, Herbarium and Museum division of Jambheshwar University of Science and Technology, Hisar. The plant material was further size reduced and filtered through Whatman No. 1 filter paper and the Supernatant was evaporated using rotary evaporator at 45°C and the final liquid suspension was lyophilized to cause pica behavior in rats [19-20]. In present study, the paste was rolled and cut into pieces similar to regular rats. Experimental design

The rats were randomly assigned to six groups of six animals each. Group I and II treated with vehicle (distilled water) was kept as normal and control group respectively. Group III and IV were administered with MPL (200 and 400 mg/kg body wt; p.o.) for 7 days. Group V and VI were also administered with MPL (200 and 400 mg/kg body wt; p.o.) for 7 days. Group II, III and IV were injected with a single dose of cisplatin (03 mg/kg body weight; i.p.) on day 4, to induce the pica behavior. On each experimental day (next five consecutive days), kaolin intake (g), food intake (g), and body weight (g) were measured. To measure kaolin and food intake, the remaining kaolin and food from the day prior was collected including that spilled outside the containers. The collected kaolin and food were dried for 72 h to obtain dry weight (g).

Statistical analysis

The statistical significance of differences among values of individual parameters was evaluated by using the Student’s t test. All the values are expressed as mean ± SD. The significance was set at p < 0.05.

RESULTS

Kaolin intake (pica) was measured in rats of various groups under study. Fig 1 demonstrates that MPL from waste land of Dist. Hisar and Sirsa, Haryana pretreatment significantly reduced kaolin intake induced by cisplatin. Cisplatin induced a significant increase in kaolin consumption in the animals of group II at 24, 48,
72, 96 and 120 h compared to normal animals of group I
168 (p < 0.05). The MPL (200 mg/kg) pretreatment significantly decreases the kaolin intake compared to group II at 24, 48, 72 and 96 h (p < 0.05). Kaolin intake at 24 h (4.1±0.27 g) was significantly lower in MPL (200 mg/kg) pretreated animals than the animals of group II (6.9±0.43 g). However, kaolin intake was still higher than normal baseline intake at 0 h (0.3 ±0.02 g). Pretreatment with MPL (400 mg/kg) significantly reduced kaolin intake compared to group II at 24, 48, 72, 96 and 120 h (p < 0.05). Moreover, the kaolin consumption was near to the baseline intake at 0 h. This suggests that MPL at 400 mg/kg reduced the pica for longer and to a greater magnitude compared to MPL at 200 mg/kg. The group I, V and VI did not show any significant variation in kaolin intake during the experiment when compared to its baseline (0 h). Fig 2 shows the effect of pretreatment with MPL on reduced food intake (% baseline) induced by cisplatin in rats. Values are expressed as mean ± SD. a p < 0.05 with respect to normal, b p < 0.05 with respect to control.

DISCUSSION

The present study inferred that methanolic extract from *Pluchea lanceolata* attenuated kaolin intake (pica) and cisplatin-induced nausea/vomiting. Additionally, the antioxidant activity of MPL may be one of the mechanisms by which MPL attenuates cisplatin-induced nausea/emesis. The mechanism of cisplatin-induced nausea/vomiting is possibly mediated via cytotoxic damage to the enterochromaffin cells in the small intestine by ROS release and treatment with an antioxidant should reduce these side effects. Based on Fig 1. Effect of cisplatin (3 mg/kg) and cisplatin plus MPL (200 and 400 mg/kg) on kaolin intake. Values are expressed as mean ± SD. *p* < 0.05 with respect to normal, *p* < 0.05 with respect to control.

Fig 2. Effect of cisplatin (3 mg/kg) and cisplatin plus MPL (200 and 400 mg/kg) on reduced food intake (% baseline) induced by cisplatin in rats. Values are expressed as mean ± SD. a p < 0.05 with respect to normal, b p < 0.05 with respect to control.
these facts, the present investigation was done to evaluate the efficacy of Plucheaa lanceolata, in cisplatin-induced pica. In vitro antioxidant activity of methanolic root extract of Plucheaa lanceolata was already determined by DPPH free radical scavenging assay and hydrogen peroxide scavenging activity [26,27]. The results showed that MPL at dose of 200 mg/kg and 400 mg/kg reduced cisplatin-induced pica. This suggests that cisplatin-induced pica (nausea) could be treated with MPL. Although low doses of MPL caused reduced pica in cisplatin-treated rats, the improvement was still less as compared to normal kaolin intake.

These findings support the notion that herbal medications, such as MPL, could be an effective and inexpensive alternative for preventing chemotherapy-induced emesis without troublesome side effects.

Further, earlier studies also showed that herbal antioxidants may have a role in attenuating cisplatin-induced nausea and vomiting [28]. However, it is important to examine the interaction between the herbal extract and cisplatin, which could either hamper or augment the anticancer actions of cisplatin. As cisplatin act by oxidative stress in tumor cells and treatment with antioxidants could detoxify ROS, the herb may prevent oxidant injury to tumor cells and sensitize the tumor cells to the anticancer effects of chemotherapy [29].

We conclude that herbal antioxidants potentially represent a new class of low-cost antiemetic agents for the treatment of chemotherapy-induced nausea/vomiting. Additional studies are required to further investigate the antiemetic actions of such herbal medications and the effects of interaction with the chemotherapeutic agents.

REFERENCES

257

Pluchea Lanceolata and cisplatin-induced nausea/vomiting

C CURRENT AUTHOR ADDRESSES
Naveen Goyal, Roorkee College of Pharmacy, Roorkee-247667, Haridwar, Uttarakhand, India. E-mail: hsrmaveen@yahoo.co.in
Surendra Kr. Sharma, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India.

Published online: January 31, 2013