Studies of Cytotoxic Potential of Cucumis melo. Linn Fruit Aqueous Extract in Prostate Cancer Cell lines PC-3 Using MTT and Neutral Red Assay

SIBI P ITTIYAVIRAH, ANN GEORGE, ANJU M SANTHOSH, SUDHI T KURIAN, PRINSY PAPPACHAN and GIFTY JACOB

ABSTRACT

The objective of the study was to evaluate the cytotoxic effects of aqueous fruit extract of Cucumis melo in human prostate cancer cell line (PC-3) using MTT and neutral red assays. The crude aqueous extract of C. melo was prepared by cold maceration method, filtered, concentrated and tested on PC-3 cell line. Dose-dependent cytotoxic activities were exhibited by human prostate carcinoma PC-3 cell line. As the dose of the extract increased, the number of viable cells decreased. This confirms the anti-cancer and cytotoxic potential of the fruit of C. melo.

Keywords: Cytotoxicity, MTT assay, Neutral red assay, Human prostate carcinoma cell lines (PC-3), Cucumis melo
Effect of *cucumis* on prostate cancer

antioxidant molecule. Most of these plant extracts contain various amounts of vitamin E and C, Carotenes, tripterpenoids and other flavanoids [3]. For this, these were used as potential antioxidant prophylactic agents for both health and diseases management [3,4]. The methanolic seed extract (MECM) of *Cucumis melo* Var. possess significant antioxidant, anti-inflammatory and analgesic properties [5], while the fruit extract *C. melo* fruit exhibited immunomodulatory activity [6]. Even though a large number of compounds were screened for cytotoxicity and anticancer studies, hardly a few lead compounds had shown promising results. Hence, it was thought to identify potential compounds from our traditional ethno-medical knowledge for treatment of kidney, urinary and prostate cancer. In the present study, an initial attempt has made for to scientifically evaluate its anticancer effects. The main aim of the study is to evaluate the cytotoxic effects of aqueous fruit extract of *C. melo* in human prostate cancer cell line (PC-3) using MTT and neutral red assays.

Materials and Methods

C. melo fruits were collected from local fruit stall Cherthala, Alappuzha District in the month of November 2012 and authenticated at Department of Environment Sciences, Mahatma Gandhi University, Kottayam, Kerala, India. In vitro methods were used for assessing the cytotoxic activity and they were in accordance with the guidelines of Institutional Animal Ethical Committee (IAEC).

Reagents for phyto-chemical analysis

- Bismuth nitrate, Nitric acid, Potassium iodide
- Sodium carbonate, Mercuric chloride, Sulphuric acid
- Hydrochloric acid, Sodium hydroxide, Ferric chloride
- Alpha naphthol, Copper sulphate, Zinc chloride 3-(4) of alcohols. 2.5-diphenyltetrazolium brown precipitate confirmed the presence of alkaloids.

Phytochemical analysis

Eight gram of bismuth nitrate was dissolved in 20 ml nitric acid and 2.72 g of potassium iodide in 50 ml water. These were mixed and allowed to stand. When potassium nitrate crystals out, the supernatant was discarded off and made up to 100 ml with distilled water. The alkaloids were regenerated from the precipitate by treating with sodium carbonate followed by extraction of the liberated base with ether. To 0.5 ml of alcoholic solution of extract was added 2.0 ml of hydrochloric acid. To this acidic medium, 1.0 ml of reagent was added. An orange red precipitate was produced immediately indicated the presence of alkaloids.

Alkaloids-Dragedoff’s test

The following tests were carried out to analyze the possible phytochemicals present in the aqueous extract of *C. melo*.

Mayer's test

The amount of 1.36 g mercuric chloride was dissolved in 60 ml of distilled water and 5 g of potassium iodide in 10 ml of water. The two solutions were mixed and diluted to 100 ml with distilled water. To 1 ml of acidic aqueous solution of extracts, a few drops of reagent was added. Formation of white or pale precipitate showed the presence of flavonoids, reddish pink or dirty brown color was produced.

Wagner's test

In a test tube containing 0.5 ml of alcoholic extract, 5-10 drops of dilute HCl and a small piece of ZnCl₂ or Mg were added and the solution was boiled for few minutes. In the presence of flavonoids, reddish pink or yellow color was produced in the chloroform layer.

Phytosterols

To 2 ml of chloroform extract, 1ml of concentrated sulphuric acid was added carefully along the sides of the test tube. In the presence of phytosterols, a golden yellow color was produced in the chloroform layer.

Glycosides

A small amount of alcoholic extract was dissolved in 1 ml of water and the aqueous NaOH solution was done occasionally. After seven days, the liquid was added. Formation of yellow colour indicated the presence of glycosides.

Materials and Methods

- plant material
- C. melo
- fruits were collected from local fruit stall
- Cherthala, Alappuzha District in the month of
- November 2012 and authenticated at Department of
- Environment Sciences, Mahatma Gandhi University,
- Kottayam, Kerala, India. In vitro methods were used for
- assessing the cytotoxic activity and they were in accordance
- with the guidelines of Institutional Animal
- Ethical Committee (IAEC).

- Reagents for phyto-chemical analysis
- Bismuth nitrate, Nitric acid, Potassium iodide
- Sodium carbonate, Mercuric chloride, Sulphuric acid
- Hydrochloric acid, Sodium hydroxide, Ferric chloride
- Alpha naphthol, Copper sulphate, Zinc chloride 3-(4) of alcohols. 2.5-diphenyltetrazolium brown precipitate confirmed the presence of alkaloids.

- Phytochemical analysis
- Eight gram of bismuth nitrate was dissolved in 20 ml nitric acid and 2.72 g of potassium iodide in 50 ml water. These were mixed and allowed to stand. When potassium nitrate crystals out, the supernatant was discarded off and made up to 100 ml with distilled water. The alkaloids were regenerated from the precipitate by treating with sodium carbonate followed by extraction of the liberated base with ether. To 0.5 ml of alcoholic solution of extract was added 2.0 ml of hydrochloric acid. To this acidic medium, 1.0 ml of reagent was added. An orange red precipitate was produced immediately indicated the presence of alkaloids.

- Alkaloids-Dragedoff’s test
- The following tests were carried out to analyze the possible phytochemicals present in the aqueous extract of *C. melo*.

- Mayer's test
- The amount of 1.36 g mercuric chloride was dissolved in 60 ml of distilled water and 5 g of potassium iodide in 10 ml of water. The two solutions were mixed and diluted to 100 ml with distilled water. To 1 ml of acidic aqueous solution of extracts, a few drops of reagent was added. Formation of white or pale precipitate showed the presence of flavonoids, reddish pink or dirty brown color was produced.

- Wagner's test
- In a test tube containing 0.5 ml of alcoholic extract, 5-10 drops of dilute HCl and a small piece of ZnCl₂ or Mg were added and the solution was boiled for few minutes. In the presence of flavonoids, reddish pink or yellow color was produced in the chloroform layer.

- Phytosterols
- To 2 ml of chloroform extract, 1ml of concentrated sulphuric acid was added carefully along the sides of the test tube. In the presence of phytosterols, a golden yellow color was produced in the chloroform layer.

- Glycosides
- A small amount of alcoholic extract was dissolved in 1 ml of water and the aqueous NaOH solution was done occasionally. After seven days, the liquid was added. Formation of yellow colour indicated the presence of glycosides.
No characteristic change was observed in the culture (MTT: 0.220, 100% viability). To the culture (MTT: 0.211, 95.90% viability), 100 µg of aqueous extract, 2 µl of stock of 100 µg/volume dissolved in PBS. These were incubated at 37°C for 3 hours. All MTT wash was removed with 1× PBS and 300 µl DMSO was added to each culture. The plates were incubated at room temperature for 30 min until the cell get lysed and color was obtained. The solution was transferred to centrifuge tubes and centrifuged at top speed for 2 min to precipitate cell debris. Optical density (OD) was read at 540 nm using DMSO as blank.

Neutral red assay

The neutral red cytotoxicity test was based on the ability of living cells to uptake and bind neutral red (NR). NR was a positively-charged dye that easily diffuses through the cellular membrane of the cells, accumulates in the cellular cytoplasm and stores in the acidic environment of lysosomes. The principle of the test consists in the fact that NR are able to absorb and bind only with live cells while this ability declines in aged or dead cells. The amount of accumulated NR was thus directly proportional to the amount of live cells in the cell culture. The pH of the neutral red solution...
Effect of *cucumis* on prostate cancer

Table 3. Cytotoxicity studies aqueous extract of *C.melo* using Neutral red assay

<table>
<thead>
<tr>
<th>Sample concentration (µg/ml)</th>
<th>OD (540 nm)</th>
<th>% viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.086</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>0.070</td>
<td>81.39</td>
</tr>
<tr>
<td>500</td>
<td>0.065</td>
<td>75.58</td>
</tr>
<tr>
<td>1000</td>
<td>0.057</td>
<td>66.27</td>
</tr>
</tbody>
</table>

was adjusted in all the experiments to 6.35 with the addition of potassium dihydrogen phosphate (1M), 10 μl of neutral red solution was added to plates and incubated for 3 h in CO2 incubator at 37°C. Cells were then washed with phosphate buffer saline (PBS) and fixed with 200 ul of fixing solution. One ml of the elution medium (ethanol/ acetic acid, 50%/1%) was added followed by gentle shaking for 10 min, so that complete dissolution was achieved. Aliquots of the resulting solutions were transferred to cuvettes and the absorbance at 540 nm was recorded using the spectrophotometer.

RESULTS

Phytochemical analysis

The medicinal value of these plants lies in some chemical active substances that produce a definite physiological action on the human body. The most important of these bioactive constituents of plants are alkaloids, tannins, flavonoids and phenolic compounds [8]. The Phytochemical screening of the aqueous extracts of plant sample revealed the presence of alkaloids and flavonoids and phytosterols (Table 1) [9].

Cytotoxic studies

MTT results showed that 1000 µg/ml aqueous extract of *Cucumis melo* showed 67.27% (Table 2, Fig 1) while the neutral red uptake assay showed 66.27% viability (Table 3, Fig 2). The photograph of PC-3 cell including plants, marine organisms and micro-

Fig 1. Cytotoxicity studies aqueous extract of *C.melo* using MTT assay

Fig 2. Cytotoxicity studies aqueous extract of *C.melo* using Neutral red assay

Discussion

Metastatic prostate carcinoma is associated with a high morbidity and mortality rate with a medium survival of approximately, 12–15 months. Available treatment alternatives include radiotherapy after radical retropubic prostatectomy, radical prostatectomy, external beam radiation, prostate brachy therapy, and androgen ablation of the prostate. Until recently, despite androgen suppression, no cytotoxic agent has been able to change the progression of metastatic prostate cancer. Androgen ablation therapy remains the main course of treatment with advanced disease. However, it has no effect on hormone-independent cancer cells. Chemotherapeutic agents result in less than a 10% response in advanced prostate carcinoma, in part due to increased resistance of androgen-independent cells to apoptosis. However, the severe side effects of chemotherapy have remained a major problem.

In recent years considerable efforts have been made to identify naturally-occurring compounds and related synthetic agents can prevent the development and recurrence of cancer. A wide variety of natural food and food products can induce apoptosis in various tumor cells. There is strong evidence supporting the positive role of some natural materials and medicinal plants in oncology and their ability affect all phases of tumorigenic process. Therefore, it is important to screen the natural products either as crude extracts or as isolated components for apoptotic properties to identify potential anti-cancer compounds. Over 60% anti-cancer agents currently used are derived from natural sources, including plants, marine organisms and micro-

Table 2
organisms and they offer an opportunity to study the molecular mechanisms of tumorgenesis.
Cucurbitaceae plants are highly useful as they have good potential against many health ailments. In the present study, the phytochemical screening of the aqueous extracts of plant sample revealed the presence of alkaloids and flavonoids and phytotherals [9]. These phytoconstituents may be responsible for various activities. Flavonoids are diverse family of compounds commonly found in fruits, vegetables and honey. Flavanoids are generally safe and associated with low toxicity, making them ideal candidates for cancer chemopreventive agents. MTT results and neutral red uptake assay confirms dose-dependent anti-proliferative effect of crude aqueous extract of Cucumis melo on prostate cancer cell lines. As the dose of the extract increases, number of viable cells decreases and confirms the cytotoxic activity.

It is concluded that the aqueous extract of C. melo was found to possess dose-dependent cytotoxic activity on metastatic human prostate cancer cell lines PC-3. Further studies are warranted to explore the anticancer effect of C. melo and also the active principles could be isolated and investigated.

REFERENCES

CURRENT AUTHOR ADDRESSES

Sibi P Ittiyavirah, Department of Pharmacology, University College of Pharmacy, Cheruvandoor campus, Ettumanoor P.O, Kottayam, Kerala Pin-686691, India. E-mail: sibiithoo@gmail.com (Corresponding author)

Ann George, Department of Pharmacology, University College of Pharmacy, Cheruvandoor campus, Ettumanoor P.O, Kottayam, Kerala Pin-686691, India.
Effect of cucumis on prostate cancer

Anju M Santhosh, Department of Pharmacology, University College of Pharmacy, Cheruvandoor campus, Ettumanoor P.O, Kottayam, Kerala Pin-686691, India.

Sudhi T Kurian, Department of Pharmacology, University College of Pharmacy, Cheruvandoor campus, Ettumanoor P.O, Kottayam, Kerala Pin-686691, India.

Princy Pappachan, Department of Pharmacology, University College of Pharmacy, Cheruvandoor campus, Ettumanoor P.O, Kottayam, Kerala Pin-686691, India.

Gifty Jacob, Department of Pharmacology, University College of Pharmacy, Cheruvandoor campus, Ettumanoor P.O, Kottayam, Kerala Pin-686691, India.

Published online: January 31, 2013