Evaluation of Antiulcer Activity of Whole Plant Extract of *Malvastrum tricuspidatum* in Experimental Animals

NEELAM BALEKAR, DINESH KUMAR JAIN, PANKAJ V. DIXIT, and SANDEEP SINGH BHADORIYA

For author affiliations, see end of text.

Received January 9, 2012; Revised April 14, 2012; Accepted May 23, 2012

ABSTRACT

Malvastrum tricuspidatum is recommended in Ayurveda and Folklore Medicine for the management of gastric ulcers. Therefore, the purpose of the study was to investigate the antiulcer effect of whole plant extract of *Malvastrum tricuspidatum* (MTE) on ethanol (EtOH)-induced, aspirin (ASP)-induced, cold-restraint-stress (CRU) and pylorus- ligation (PL) -induced gastric ulcer models in rats. Aqueous extract (MTAE 250, 500 mg/kg) and ethanolic extract (MTEE 250, 500 and 1000 mg/kg) were tested orally in ethanol-induced ulcer model. The ethanolic extract (MTEE 500 mg/kg) showed better ulcer protection than aqueous extract in ethanol induced ulcer model. Hence, effective dose of ethanolic extract (500 mg/kg) was further investigated in remaining models. The ethanolic extract (MTEE at the dose of 500 mg/kg) significantly inhibited the gastric lesions induced by EtOH (82.35%), ASP (83.10%), CRU (84.61%) and PL (75.78%), respectively. In addition MTEE showed concomitant attenuation of gastric secretory volume, free acidity, total acidity and peptic activity in ulcerated rats. Also the phytochemical tests revealed presence of antiulcer phytochemical constituents like flavonoids, tannins, terpenes and glycinebetaine in ethanolic extract. These results suggest that ethanolic extract (MTEE) of whole plant of *Malvastrum tricuspidatum* is effective against all the four experimentally induced acute gastric ulcers.

Keywords: *Malvastrum tricuspidatum*, Antiulcer, Antisecretory, Ulcer index comma

ARTICLE IN PRESS
Phytochemical screening

Preparation of ethanolic extract

The dried coarsely powdered whole plant was extracted with petroleum ether for 48 h to remove fatty matter. The defatted marc was then subjected to soxhlet extraction with 95% ethanol for 8 h. The total ethanolic extract was concentrated using rotary evaporator. The dried extract was weighed and then kept in refrigerator until ready for use. The yield of extract was 10.5% (w/w) of powdered drug [14,15]. In each experiment, the ethanolic and aqueous extracts were suspended in sodium carboxymethyl cellulose (0.5%) before use.

Experimental Animals

Adult male albino rats (150-200 g) of Wistar strain and albino mice (20-30 g) were used in the study. The animals were procured from Veterinary College, Mhow (Indore), India. The animals were acclimatized for 10 days’ under standard husbandry conditions, room temperature (27 ± 3°C), relative humidity (65 ± 10%) and 12h light/dark cycle. They were allowed free access to standard dry pelleted diet (M/s Godrej Pvt Ltd., Mumbai, India) and water ad libitum under hygienic conditions. Five rats were used for each group in antiulcer study. The study was approved by the institutional animal ethics Committee, which follows the guidelines of CPSCEA (Committee for the Purpose of Control and Supervision of Experiments on Animals, IPCB, New Delhi) and which complies with international norms of INSA.

Toxicity study

Acute oral toxicity study of aqueous and ethanolic extract of the M. tricuspidatum was carried out for determination of LD₅₀ by adapting dosage schedule as per OECD guideline no. 425. The female albino mice weighing 20-30 g were used for the study. The animals were continuously observed for 12 h to detect changes in autonomic or behavioral responses. Mortality was recorded at the end of 24 h. The doses of 250, 500 and 1000 g/Kg, p.o. were selected based on the results of preliminary toxicity testing [22].

Treatment Schedule

Ethanol-induced ulcers

For ethanol induced ulcer model rats were divided into seven groups. Each groups containing five rats.

Preparation of extracts

Preparation of aqueous extract

The dried coarsely powdered whole plant (5 kg) was extracted with petroleum ether for 48 h to remove fatty carboxymethyl cellulose (0.5%) p.o.

Preparation of aqueous extract

The whole plant was collected in the month of July 2009 and shade dried at room temperature.

Materials and Methods

Drugs and chemicals

Aspirin (bulk drug) was obtained as gift sample from Cyno Pharma, Indore, India and omeprazole and ranitidine was obtained from Alpa Lab, Indore, India. Ethanol (Merck Pvt. Ltd., Mumbai) and diethyl ether (Sisco Research Lab. Pvt. Ltd., Mumbai). All the other chemicals and reagent used were prepared immediately before use and were of analytical grade.

Plant material

M. tricuspidatum whole plant was collected from the local garden of College of IPS academy, Indore. The whole plant was identified and authenticated by T. Chakraborty, Seijentist ‘D’ Botanical Survey of India, Pune. A voucher specimen (DANVIMALT5) has been assigned by Dept. of Botany, Botanical Survey of India.

Preparation of extracts

Preparation of ethanolic extract

The dried coarsely powdered whole plant was extracted with petroleum ether for 48 h to remove fatty matter. The defatted marc was then subjected to soxhlet extraction with 95% ethanol for 8 h. The total ethanolic extract was concentrated using rotary evaporator. The dried extract was weighed and then kept in refrigerator until ready for use. The yield of extract was 10.5% (w/w) of powdered drug [9].

Preparation of aqueous extract

The whole plant was collected in the month of July 2009 and shade dried at room temperature.

Preparation of aqueous extract

The dried coarsely powdered whole plant (5 kg) was extracted with petroleum ether for 48 h to remove fatty carboxymethyl cellulose (0.5%) p.o.

Preparation of aqueous extract

The dried extracted was concentrated using rotary evaporator. The dried extract was weighed and then kept in refrigerator until ready for use. The yield of extract was 5.2% (w/w) of powdered drug [9].
Antiulcer Activity of Malvastrum tricuspidatum

For aspirin-induced ulcer model rats were divided into three groups. Each group contained five rats. Group I was control and given sodium carboxymethyl cellulose (0.5 %) p.o. Group II was standard and given ranitidine (50 mg/kg) p.o. and Group III was given ethanolic extract of Malvastrum tricuspidatum (500 mg/kg) p.o. After 1 h of pretreatment with ethanolic extract (500 mg/kg) and ranitidine (50 mg/kg), ASP (1000 mg/kg) suspended in 0.5% sodium carboxymethyl cellulose was given p.o. to induce gastric ulcers. After 5 h, the animals were killed and ulcer scoring was done [25].

Cold-restraint-stress-induced gastric ulcer

For cold-restraint-stress-induced ulcer model rats, five rats were divided into three groups. Each group contained five rats. Group I was negative control (restraint stress-controlled) and given sodium carboxymethyl cellulose (0.5 %) p.o. Group II was positive control (cold- and restraint-stress-controlled) and given sodium carboxymethyl cellulose (0.5 %) p.o. Group III was standard and given Omeprazole (20 mg/kg) p.o. and Group IV was given ethanolic extract of Malvastrum tricuspidatum (500 mg/kg) p.o. pyloric ligation was applied by ligating the pyloric end of the stomach of rats under ether anaesthesia for 6 h after 1 h of ethanolic extract (500 mg/kg) or omeprazole (20 mg/kg) treatment. Animals were allowed to recover and stabilize in individual cage and were deprived of water during postoperative period. After 6 h of surgery, rats were sacrificed with over dose of chloroform and the stomach was dissected out. The glandular portion was then exposed and examined for ulceration as described earlier [28]. Gastric juice was collected and its volume [26], pH [2], free acidity and total acidity [2], mucus content [26], protein content [21] and peptic activity [29,30] were determined.

Pylorus-ligation-induced gastric ulcer

In this method, male albino rats were fasted in individual cages for 24 h and care was taken to avoid coprophagy. Pylorus ligation was applied by ligating the pyloric end of the stomach of rats under ether anaesthesia for 6 h after 1 h of ethanolic extract (500 mg/kg) or omeprazole (20 mg/kg) treatment. Animals were allowed to recover and stabilize in individual cage and were deprived of water during postoperative period. After 6 h of surgery, rats were sacrificed with over dose of chloroform and the stomach was dissected out. The glandular portion was then exposed and examined for ulceration as described earlier [28]. Gastric juice was collected and its volume [26], pH [2], free acidity and total acidity [2], mucus content [26], protein content [21] and peptic activity [29,30] were determined.

RESULT

Phytochemical screening

Preliminary phytochemical screening revealed the presence of flavonoids, triterpenes, saponins, tannins, phytosterol, alkaloids, glycosides and carbohydrates.

DISCUSSION

The male rats were randomly divided into seven groups and fasted for 24 h with free access to water. Animals were given sodium carboxymethyl cellulose (0.5%), ethanolic extract of the M. tricuspidatum at dose screening were shown Table 2.
Acute oral toxicity study of aqueous and ethanolic extracts of the *M. tricuspidatum* revealed that it did not exhibit any signs of toxicity up to 2 g/kg body weight. Since there was no mortality of the animals found at high dose, doses of 250, 500 and 1000 mg/kg of the extracts were selected for evaluation of anti-ulcer activity.

Effect of MTAE and MTEE on gastric ulcer studies

In 6 h pylorus-ligated rats, MTEE (500 mg/kg) decreased the gastric juice volume and reversed the increased output of acid and peptic secretion (Table 3). Omeprazole showed significant (*p* < 0.05) reduction in protein content and output of acid and peptic activity in pylorus ligation.

Table 2. Quantitative phytochemical analysis of aqueous and ethanolic extract of *Malvastrum tricuspidatum*

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>Quantity in aqueous extract</th>
<th>Quantity in ethanolic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids (%)</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Flavonoids (%)</td>
<td>12.50</td>
<td>20.50</td>
</tr>
<tr>
<td>Carbohydrates (mg/ml)</td>
<td>4.7</td>
<td>4.3</td>
</tr>
<tr>
<td>Glucose</td>
<td>5.4</td>
<td>4.56</td>
</tr>
<tr>
<td>Fructose</td>
<td>6.5</td>
<td>5.93</td>
</tr>
<tr>
<td>Lactose</td>
<td>7.47</td>
<td>6.37</td>
</tr>
<tr>
<td>Maltose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipids (mg/ml)</td>
<td>0.208</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 3. Effect of MTAE and MTEE on EtOH-, ASP-, CRU- and PL-induced ulcers in rats

<table>
<thead>
<tr>
<th>Treatment dose (mg/kg)</th>
<th>Ulcer index</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH-induced ulcer control (EtOH)</td>
<td>22.1 ± 0.33</td>
<td>--</td>
</tr>
<tr>
<td>OMP (20) + EtOH</td>
<td>2.5 ± 0.50*</td>
<td>88.68</td>
</tr>
<tr>
<td>MTAE (250) + EtOH</td>
<td>13.9 ± 0.18*a</td>
<td>37.10</td>
</tr>
<tr>
<td>MTAE (500) + EtOH</td>
<td>4.2 ± 0.84*</td>
<td>80.90</td>
</tr>
<tr>
<td>MTEE (250) + EtOH</td>
<td>9.7 ± 0.58*a</td>
<td>56.10</td>
</tr>
<tr>
<td>MTEE (500) + EtOH</td>
<td>3.9 ± 0.10*</td>
<td>82.35</td>
</tr>
<tr>
<td>MTEE (1000) + EtOH</td>
<td>3.7 ± 0.12*</td>
<td>83.25</td>
</tr>
<tr>
<td>ASP induced ulcers control (ASP)</td>
<td>14.80 ± 0.560</td>
<td>--</td>
</tr>
<tr>
<td>Ranitidine (50)</td>
<td>1.50 ± 0.223*</td>
<td>89.36</td>
</tr>
<tr>
<td>MTEE (500) + ASP</td>
<td>2.5 ± 0.220*</td>
<td>83.10</td>
</tr>
<tr>
<td>Negative control (CRU)</td>
<td>0.5 ± 0.223</td>
<td>--</td>
</tr>
<tr>
<td>Positive control (CRU)</td>
<td>6.5 ± 0.353*b</td>
<td>--</td>
</tr>
<tr>
<td>OMZ (20) + CRU</td>
<td>0.9 ± 0.187*b</td>
<td>85.95</td>
</tr>
<tr>
<td>MTEE (500) + CRU</td>
<td>1.0 ± 0.220*</td>
<td>84.61</td>
</tr>
<tr>
<td>PL-induced ulcers control (PL)</td>
<td>9.5 ± 0.50</td>
<td>--</td>
</tr>
<tr>
<td>OMZ (20) + PL</td>
<td>1.4 ± 0.33*</td>
<td>85.26</td>
</tr>
<tr>
<td>MTEE (500) + PL</td>
<td>2.3 ± 0.25*</td>
<td>75.78</td>
</tr>
</tbody>
</table>

EtOH: Ethanol; MTAE: Malvastrum tricuspidatum Aqueous extract; MTEE: Malvastrum tricuspidatum Ethanolic extract; OMP: omeprazole; ASP: aspirin; CRU: Restraint controlled ulcer; PL: pylorus-ligation.

Results are expressed as mean ± SEM; *n=5* in each group comparison made with control and with standard group. Data were analyzed by one way ANOVA followed by Tukey’s multiple comparison test.

p < 0.05= compared to control group

p < 0.05= compared to standard group
The anti-ulcer activity of the whole plant extract of *Malvastrum tricuspidatum* as evaluated by employing the Ulceration and Ulceration of pylorus ligation models. These models represent some of the most common causes of gastric ulcer in humans. Many factors and mechanisms are implicated in the ulcerogenesis and gastric mucosal damage induced by these agents. The ethanolic extract of *Malvastrum tricuspidatum* has been proposed to explain their gastroprotective effects through inhibition of prostaglandin synthesis. Aqueous and ethanolic extract of *Malvastrum tricuspidatum* has significantly protected the gastric mucosa against ethanol challenge as shown by reduced ulcer index and ulceration of pylorus ligation models.

Table 4. Gastroprotective activity of ethanolic extract of whole plant of *Malvastrum tricuspidatum* on various parameters in pylorus ligated ulcer

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Volume of gastric juice (ml)</th>
<th>pH</th>
<th>Free acidity (mEq/l/100g)</th>
<th>Total acidity (mEq/l/100g)</th>
<th>Gastric mucus content (µg of alcian blue/g of stomach)</th>
<th>Total protein (µg/ml)</th>
<th>Pepsin activity (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>--</td>
<td>4.32 ± 0.25</td>
<td>2.4 ± 0.31</td>
<td>27.2 ± 2.45</td>
<td>47.4 ± 2.13</td>
<td>4.82 ± 0.11</td>
<td>286.38 ± 15.68</td>
<td>45.75 ± 1.39</td>
</tr>
<tr>
<td>OMZ 20</td>
<td>2.24 ± 0.19*</td>
<td>3.94 ± 0.20*</td>
<td>11.0 ± 0.70</td>
<td>26.2 ± 1.53</td>
<td>8.74 ± 0.44*</td>
<td>165.3 ± 8.35*</td>
<td>18.04 ± 0.84*</td>
<td></td>
</tr>
<tr>
<td>MTEE 500</td>
<td>1.68 ± 0.18*</td>
<td>4.52 ± 0.18*</td>
<td>11.48 ± 0.54*</td>
<td>21.8 ± 1.49*</td>
<td>5.83 ± 0.16*</td>
<td>191.7 ± 12.85*</td>
<td>31.85 ± 0.59*</td>
<td></td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SEM; n=5 in each group comparison made with control and with standard group. Data were analyzed by one way ANOVA followed by Tukey’s multiple comparison test.

* p < 0.05 = compared to control group

* p < 0.05 = compared to standard group
histamine secretion. On the other hand, tannins and polyphenols may prevent ulcer development due to their protein precipitating and vasoconstricting effects. Their astringent action can help precipitating microproteins on ulcer site thereby forming an impervious layer over the lining that hinders gut secretions and protects underlying mucosa from toxins and other irritants and stimulate PGE₂ formation. Terpenes are known to possess antiulcer activity and their action has been suggested to be due to the activation of cellular protection, reduction of mucosal prostaglandins metabolism-cytoprotective action and reduction of gastric vascular permeability. Betaine also known as glycinebetaine closely related to amino acid, glycine.

Earlier experimental studies indicated that betaine could preserve cellular and subcellular membranes from free radical mediated oxidative damage by its antioxidant activity. The ability of betaine to maintain the mucosal antioxidant status at higher rate demonstrates its possible preventive efficacy in inhibiting free radical mediated ulcerogenesis. The antiulcer activity of betaine is probably related to its ability to neutralize the hydrochloric acid secreted in to stomach and/or its antioxidant nature by which it maintains the level of GSH and the activities of the mucosal antioxidant enzymes to near normal status. Thus it protects the gastric mucosa against oxidative damage by decreasing lipid peroxidation and strengthening the mucosal barrier [37-39].

In conclusion, On the basis of the present results and available reports, it can be concluded that the anti-ulcer activity elucidated by *Malvastrum tricuspidatum* could be mainly due to the modulation of defensive factors through an improvement of gastric cytoprotection and partly due to decreased acid secretion. The results also supported the presence of flavonoids, tannins, and terpenes in ethanolic extract of *Malvastrum tricuspidatum* that are reported to possess antiulcer activity by various mechanisms like free radical scavenging, increased mucosal PGE₂, increased mucosal blood flow, decreased histamine secretion, astringent action, neutralizing HCl secreted and antioxidant nature. Hence, it is suggested that *Malvastrum tricuspidatum* ethanolic extract show antiulcer activity by suppressing gastric damage induced by aggressive factors as well as by regulating the defensive factors.

REFERENCES

1. **Goel RK, Sairam K. Antiulcer drugs from indigenous sources** [7924].
4. **Toxicol 2007; 8:117-22.**

Dahunakar SA, Kulkarni RA, Rege NN. Pharmacology of medicinal plants and Natural products. Indian J Pharmacol 2000; 32:S81-118.

Seshadri SD, Ashok K, Durairaj BH, Meenakshi K, Narayanan SS. Antipyretic and analgesic activity of Malvastrum coromandelianum. Linn. Hamdard Med 2008; 51:10-2.

Somolenski SJ, Silinish H, Farnsworth NR. Alkaloid screening I. Llloydia 1972; 35:1-34.

Mace GS. Anaerobic bacteriology for clinical laboratories. Pharmacognosy 1963; 23:89-91.

Finar G. Plants of economic importance, Medicinal plants and medicine in Africa. Ibadan: Spectrum Books Ltd; 1986. p. 150-3.

OECD/OCDE, 425. OECD Guideline for testing of Chemicals, Acute Oral Toxicity- UP and Down Procedure, 2001.

Antiulcer Activity of Malvastrum tricuspidatum

CURRENT AUTHOR ADDRESSES

Neelam Balekar, College of Pharmacy, IPS Academy, Rajendra Nagar, A.B. Road, Indore- 452012, India. E-mail: neelambalekar@gmail.com (Corresponding author)

Dinesh Kumar Jain, College of Pharmacy, IPS Academy, Rajendra Nagar, A.B. Road, Indore- 452012, India.

Pankaj V. Dixit, College of Pharmacy, IPS Academy, Rajendra Nagar, A.B. Road, Indore- 452012, India.

Sandeep Singh Bhadoriya, College of Pharmacy, IPS Academy, Rajendra Nagar, A.B. Road, Indore- 452012, India.