Evaluation of Antiulcer Activity of Whole Plant Extract of *Malvastrum tricuspidatum* in Experimental Animals

NEELAM BALEKAR, DINESH KUMAR JAIN, PANKAJ V. DIXIT, and SANDEEP SINGH BHADORIYA

ABSTRACT

Malvastrum tricuspidatum is recommended in Ayurveda and Folklore Medicine for the management of gastric ulcers. Therefore, the purpose of the study was to investigate the antiulcer effect of whole plant extract of *Malvastrum tricuspidatum* (MTE) on ethanol (EtOH)-induced, aspirin (ASP)-induced, cold-restraint-stress (CRU) and pylorus–ligation (PL)-induced gastric ulcer models in rats. Aqueous extract (MTAE 250, 500 mg/kg) and ethanolic extract (MTEE 250, 500 and 1000 mg/kg) were tested orally in ethanol-induced ulcer model. The ethanolic extract (MTEE 500 mg/kg) showed better ulcer protection than aqueous extract in ethanol induced ulcer model. Hence, effective dose of ethanolic extract (500 mg/kg) was further investigated in remaining models. The ethanolic extract (MTEE at the dose of 500 mg/kg) significantly inhibited the gastric lesions induced by EtOH (82.35 %), ASP (83.10 %), CRU (84.61%) and PL (75.78%), respectively. In addition, MTEE showed concomitant attenuation of gastric secretory volume, free acidity, total acidity and peptic activity in ulcerated rats. Also the phytochemical tests revealed presence of antiulcer phytochemical constituents like flavonoids, tannins, terpenes and glycinebetalaine in ethanolic extract. These results suggest that ethanolic extract (MTEE) of whole plant of *Malvastrum tricuspidatum* is effective against all the four experimentally induced acute gastric ulcers.

Keywords: *Malvastrum tricuspidatum*, Antiulcer, Antisecretory, Ulcer index comma

Peptic ulcer mostly refers to Amlapitta or system disorders such as gastrointestinal inflammations Parinamasula, in Ayurveda. Amlapita is a disease of the and gastric ulcer [3]. gastrointestinal tract, especially the stomach [1]. Peptic ulcer is one of the major ailments affecting about 60% one plant possessing anti-ulcer activity is *M. tricuspidatum* (*Malvaceae*), also of human adults and nearly 80% of child population in *Malvastrum tricuspidatum*. *M. tricuspidatum* (Malvaceae), also tropical countries [2]. Peptic ulcer is the most common known as Kharenti or Bala, is an erect under shrub or gastrointestinal disorder in clinical practice. Considering herb, found as a weed distributed world wide, also in the the several side effects (arrhythmia’s, impotence, Indian subcontinent [4]. The leaves are applied to fumeacostasia and haematopoeitic changes) of modern inflamed sores and wound. The flowers are given as a antulcer medicine, indigenous drugs possessing fewer pectoral and diaphoretic [5]. This plant is used side effects should be looked for as a better alternative ethnomedicinally in cough, chest and lung disease. The for the treatment of peptic ulcer. There is evidence decoction of leaf is given in dysentery and smelling of concerning the participation of reactive oxygen species root helps to prevent vomiting [6]. It is traditionally in the etiology and pathophysiology of human diseases, used as antipyretic, smooth muscle relaxant and such as neurodegenerative disorders, inflammation, ulceroprotective [7-9]. *M. tricuspidatum*, crude water viral infections, autoimmune pathologies and digestive extract (Whole plant) was reported to possess anti-
Preparation of ethanolic extract

The dried coarsely-powdered whole plant was extracted with petroleum ether for 48 h to remove fatty matter. The defatted marc was then subjected to soxhlet extraction with 95 % ethanol for 8 h. The total ethanolic extract was concentrated using rotary evaporator. The dried extract was weighed and then kept in refrigerator until ready for use. The yield of extract was 10.5 % (w/w) of powdered drug [14,15]. In each experiment, the ethanolic and aqueous extracts were suspended in sodium carboxymethyl cellulose (0.5%) before use.

Phytochemical screening

The chemical constituents of aqueous and ethanolic extracts were identified by qualitative phytochemical analysis [16-19] and quantitative phytochemical analysis [20,21].

Experimental Animals

Adult male albino rats (150-200 g) of Wistar strain and albino mice (20-30 g) were used in the study. The animals were procured from Veterinary College, Mhow (Indore), India. The animals were acclimatized for 10 days under standard husbandry conditions, room temperature (27 ± 3°C), relative humidity (65 ± 10 %) and 12 h light/dark cycle. They were allowed free access to standard dry pelleted diet (M/s Godrej Pvt Ltd., Mumbai, India) and water ad libitum under hygienic conditions. Five rats were used for each group in an experiment. The study was approved by the institutional animal ethics Committee, which follows the guidelines of CPSCEA (Committee for the Purpose of Control and Supervision of Experiments on Animals, CPCSEA), New Delhi, which complies with international norms of INSAR.

Toxicity study

The acute oral toxicity study of aqueous and ethanolic extract of the M. tricuspidatum was carried out for determination of LD₅₀ by adopting dosage schedule as per OECD guideline no. 425. The female albino mice weighing 20-30 g were used for the study. The animals were continuously observed for 12 h to detect changes in autonomic or behavioral responses. Mortality was observed for 24h. The doses of 250, 500 and 1000 g/Kg, 200 mg/kg were selected based on the results of preliminary toxicity testing [22].

Treatment Schedule

For ethanol induced ulcer model rats were divided into seven groups. Each groups containing five rats.

Preparation of extracts

Preparation of aqueous extract

The dried coarsely powdered whole plant (5 kg) was extracted with petroleum ether for 48 h to remove fatty matter. The defatted marc was then subjected to soxhlet extraction with 95 % ethanol for 8 h. The total ethanolic extract was concentrated using rotary evaporator. The dried extract was weighed and kept in refrigerator until ready for use. The yield of extract was 5.2 % (w/w) of powdered drug [9].

Malvastrum tricuspidatum (250, 500, 1000 mg/kg) p.o.

Preparation of ethanolic extract

The dried coarsely-powdered whole plant was extracted with petroleum ether for 48 h to remove fatty matter. The defatted marc was then subjected to soxhlet extraction with 95 % ethanol for 8 h. The total ethanolic extract was concentrated using rotary evaporator. The dried extract was weighed and then kept in refrigerator until ready for use. The yield of extract was 10.5 % (w/w) of powdered drug [14,15]. In each experiment, the ethanolic and aqueous extracts were suspended in sodium carboxymethyl cellulose (0.5%) before use.

Phytochemical screening

The chemical constituents of aqueous and ethanolic extracts were identified by qualitative phytochemical analysis [16-19] and quantitative phytochemical analysis [20,21].

Experimental Animals

Adult male albino rats (150-200 g) of Wistar strain and albino mice (20-30 g) were used in the study. The animals were procured from Veterinary College, Mhow (Indore), India. The animals were acclimatized for 10 days under standard husbandry conditions, room temperature (27 ± 3°C), relative humidity (65 ± 10 %) and 12 h light/dark cycle. They were allowed free access to standard dry pelleted diet (M/s Godrej Pvt Ltd., Mumbai, India) and water ad libitum under hygienic conditions. Five rats were used for each group in an experiment. The study was approved by the institutional animal ethics Committee, which follows the guidelines of CPSCEA (Committee for the Purpose of Control and Supervision of Experiments on Animals, CPCSEA), New Delhi, which complies with international norms of INSAR.

Toxicity study

The acute oral toxicity study of aqueous and ethanolic extract of the M. tricuspidatum was carried out for determination of LD₅₀ by adopting dosage schedule as per OECD guideline no. 425. The female albino mice weighing 20-30 g were used for the study. The animals were continuously observed for 12 h to detect changes in autonomic or behavioral responses. Mortality was observed for 24h. The doses of 250, 500 and 1000 g/Kg, 200 mg/kg were selected based on the results of preliminary toxicity testing [22].

Treatment Schedule

For ethanol induced ulcer model rats were divided into seven groups. Each groups containing five rats.

Preparation of extracts

Preparation of aqueous extract

The dried coarsely powdered whole plant (5 kg) was extracted with petroleum ether for 48 h to remove fatty matter. The defatted marc was then subjected to soxhlet extraction with 95 % ethanol for 8 h. The total ethanolic extract was concentrated using rotary evaporator. The dried extract was weighed and kept in refrigerator until ready for use. The yield of extract was 5.2 % (w/w) of powdered drug [9].

Malvastrum tricuspidatum (250, 500, 1000 mg/kg) p.o.
Table 1. Qualitative phytochemical analysis of aqueous and ethanolic extract of *Malvastrum tricuspidatum*

<table>
<thead>
<tr>
<th>Sr.no</th>
<th>Phytochemicals</th>
<th>Aqueous extract</th>
<th>Ethanol extract</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Saponins</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Tannins</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Phytosterols</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Carbohydrates</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Proteins</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Terpenoids</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Volatile oil</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ indicates present
- indicates absent

Aspirin-induced ulcers

For aspirin-induced ulcer model rats were divided into three groups. Each group contained five rats.

1. Group I was control and given sodium carboxymethyl cellulose (0.5 %) p.o.
2. Group II was standard and given ranitidine (50 mg/kg) p.o.
3. Group III was given ethanolic extract of *Malvastrum tricuspidatum* (500 mg/kg) p.o.

Cold-restraint-stress-induced ulcers

For cold-restraint-stress-induced ulcer model rats were divided into three groups. Each group contained five rats.

1. Group I was negative control (restraint-stress-controlled) and given sodium carboxymethyl cellulose (0.5 %) p.o.
2. Group II was positive control (cold- and restraint-stress-controlled) and given sodium carboxymethyl cellulose (0.5 %) p.o.
3. Group III was standard and given omeprazole 20 mg/kg p.o.
4. Group IV was given ethanolic extract of *Malvastrum tricuspidatum* (500 mg/kg) p.o.

Pylorus-lication-induced ulcer

For pylorus-licated ulcer model rats were divided into three groups. Each group contained five rats.

1. Group I was control and given sodium carboxymethyl cellulose (0.5 %) p.o.
2. Group II was standard and given omeprazole 20 mg/kg p.o.
3. Group III was given ethanolic extract of *Malvastrum tricuspidatum* (500 mg/kg) p.o.

Result

Ethanol-induced ulcers

The male rats were randomly divided into seven groups. Each group contained five rats.

1. Group I was control and given sodium carboxymethyl cellulose (0.5 %) p.o.
2. Group II was standard and given ranitidine (50 mg/kg) p.o.
3. Group III was given ethanolic extract of *Malvastrum tricuspidatum* (500 mg/kg) p.o.
4. Group IV was given ethanolic extract of *Malvastrum tricuspidatum* (1000 mg/kg) p.o.
5. Group V was given aqueous extract (250 mg/kg) p.o.
6. Group VI was given aqueous extract (500 mg/kg) p.o.
7. Group VII was given aqueous extract (1000 mg/kg) p.o.

Antulcer study

Phytochemical screening

Preliminary phytochemical screening revealed the presence of flavonoids, triterpenes, saponins, tannins, proteins, and carbohydrates in the extracts.
Acute oral toxicity study of aqueous and ethanolic extracts of the *M. tricuspidata* tum revealed that it did not exhibit any signs of toxicity up to 2 g/kg body weight. Since there was no mortality of the animals found at high dose, doses of 250, 500 and 1000 mg/kg of the extracts were selected for evaluation of anti-ulcer activity.

Effect of MTAE and MTEE on gastric ulcer studies

Effect of MTAE and MTEE on various types of gastric ulcer models was shown in Tables 3 and 4 and Fig 1. In ulcerogen-treated animals, extensive gastric ulcers in the stomach of all the experimental models were shown. Both ethanol and cold restraint stress provoked haemorrhagic form of ulcers in the stomach with adequate evidence with intraluminal bleeding whereas aspirin caused mostly petechial ulcers and erosions. MTAE (250 and 500 mg/kg) and MTEE (250, 500 and 1000 mg/kg) given orally showed dose-dependent protective effect against gastric ulcer induced by ethanol and was comparable with omeprazole.

MTEE at a dose of 500 mg/kg significantly \(p < 0.05 \) reduced gastric ulcers in pylorus ligated ulcer model.

Effect of MTAE and MTEE on gastric ulcer studies

In 6 h pylorus-ligated rats, MTEE (500 mg/kg) decreased the gastric juice volume and reversed the increased output of acid and peptic secretion (Table 3). Omeprazole showed significant \(p < 0.05 \) reduction in protein content and output of acid and peptic activity in pylorus ligation.

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>Quantity in aqueous extract</th>
<th>Quantity in ethanolic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids (%)</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Flavonoids (%)</td>
<td>12.50</td>
<td>20.50</td>
</tr>
<tr>
<td>Carbohydrates (mg/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>4.7</td>
<td>4.3</td>
</tr>
<tr>
<td>Fructose</td>
<td>5.4</td>
<td>4.56</td>
</tr>
<tr>
<td>Lactose</td>
<td>6.5</td>
<td>5.93</td>
</tr>
<tr>
<td>Maltose</td>
<td>7.47</td>
<td>6.37</td>
</tr>
<tr>
<td>Lipids (mg/ml)</td>
<td>0.208</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 3. Effect of MTAE and MTEE on EtOH-, ASP-, CRU- and PL-induced ulcers in rats

<table>
<thead>
<tr>
<th>Treatment dose (mg/kg)</th>
<th>Ulcer index</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH-induced ulcer control (EtOH)</td>
<td>22.1 ± 0.33</td>
<td>--</td>
</tr>
<tr>
<td>OMP (20) + EtOH</td>
<td>2.5 ± 0.50a</td>
<td>88.68</td>
</tr>
<tr>
<td>MTAE (250) + EtOH</td>
<td>13.9 ± 0.18a</td>
<td>37.10</td>
</tr>
<tr>
<td>MTAE (500) + EtOH</td>
<td>4.2 ± 0.84a</td>
<td>80.90</td>
</tr>
<tr>
<td>MTEE (250) + EtOH</td>
<td>9.7 ± 0.58a</td>
<td>56.10</td>
</tr>
<tr>
<td>MTEE (500) + EtOH</td>
<td>3.9 ± 0.10a</td>
<td>82.35</td>
</tr>
<tr>
<td>MTEE (1000) + EtOH</td>
<td>3.7 ± 0.12a</td>
<td>83.25</td>
</tr>
<tr>
<td>ASP induced ulcers control (ASP)</td>
<td>14.80 ± 0.560</td>
<td>--</td>
</tr>
<tr>
<td>Ranitidine (50)</td>
<td>1.50 ± 0.223a</td>
<td>89.86</td>
</tr>
<tr>
<td>MTEE (500) + ASP</td>
<td>2.5 ± 0.220a</td>
<td>83.10</td>
</tr>
<tr>
<td>Negative control (CRU)</td>
<td>0.5 ± 0.223</td>
<td>--</td>
</tr>
<tr>
<td>Positive control (CRU)</td>
<td>6.5 ± 0.353b</td>
<td>--</td>
</tr>
<tr>
<td>OMZ (20) + CRU</td>
<td>0.9 ± 0.187b</td>
<td>85.93</td>
</tr>
<tr>
<td>MTEE (500) + CRU</td>
<td>1.0 ± 0.220a</td>
<td>84.61</td>
</tr>
<tr>
<td>PL-induced ulcers control (PL)</td>
<td>9.5 ± 0.50</td>
<td>--</td>
</tr>
<tr>
<td>OMZ (20) + PL</td>
<td>1.4 ± 0.33a</td>
<td>85.26</td>
</tr>
<tr>
<td>MTEE (500) + PL</td>
<td>2.3 ± 0.25a</td>
<td>75.78</td>
</tr>
</tbody>
</table>

EtOH: Ethanol; MTAE: Malvastrum tricuspidatum Aqueous extract; MTEE: Malvastrum tricuspidatum Ethanolic extract; OMP: omeprazole; ASP: aspirin; CRU: Restraint controlled ulcer; PL: pylorus-ligation.

Results are expressed as mean ± SEM; \(n=5 \) in each group comparison made with control and with standard group. Data were analyzed by one way ANOVA followed by Tukey’s multiple comparison test.

\(a p < 0.05 = \) compared to control group

\(b p < 0.05 = \) compared to standard group
DISCUSSION

The anti-ulcer activity of the whole plant extract of *Malvastrum tricuspidatum* as evaluated by employing aspirin, ethanol, cold restraint and pylorus ligation ulcer models represents some of the most common causes of gastric ulcer in humans. Many factors and mechanisms are implicated in the ulcerogenesis and gastric mucosal damage induced by these ulcerogenic and defensive factors indicating its potent cytoprotective, antioxidant, neutralizing and anti-inflammatory properties.

The anti-ulcer activity of *Malvastrum tricuspidatum* was significantly effective in protecting gastric mucosa against cold restraint stress ulcers at the dose of 500 mg/kg as shown by reduced values of lesion index and increased mucus content as compared to control group, suggesting its potent cytoprotective and antioxidants properties. It has been proposed that in pyloric ligation, the digestive effect of accumulated gastric juice and interference of gastric blood circulation are responsible for induction of ulceration. The anti-ulcer activity of *Malvastrum tricuspidatum* at the dose of 500 mg/kg in pylorus ligation model is evident from its significant reduction in gastric volume, total acidity, free acidity, ulcer index and increase in pH of gastric juice. In animals treated with ethanolic extract of *Malvastrum tricuspidatum*, the formation of free radicals was mainly due to gastric hypermotility, which could lead to mucosal over friction and regeneration of free radical during stress ulcer. Ethanolic extract of *Malvastrum tricuspidatum* was significantly effective in protecting gastric mucosa against cold restraint stress ulcers at the dose of 500 mg/kg as shown by reduced values of lesion index and increased mucus content as compared to control group, suggesting its potent cytoprotective and antioxidants properties.

Table 4. Gastroprotective activity of ethanolic extract of whole plant of Malvastrum tricuspidatum on various parameters in pylorus ligated ulcer

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Volume of gastric juice (ml)</th>
<th>pH</th>
<th>Free acidity (mEq/l 100g)</th>
<th>Total acidity (mEq/l 100g)</th>
<th>Gastric mucus content (µg of alcian blue/g of stomach)</th>
<th>Total protein (µg/ml)</th>
<th>Pepsin activity (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>--</td>
<td>4.32 ± 0.25</td>
<td>2.4 ± 0.31</td>
<td>27.2 ± 2.45</td>
<td>47.4 ± 2.13</td>
<td>4.82 ± 0.11</td>
<td>286.38 ± 15.68</td>
<td>45.75 ± 1.39</td>
</tr>
<tr>
<td>OMEZ 20</td>
<td>2.24 ± 0.19</td>
<td>3.94 ± 0.20</td>
<td>11.0 ± 0.70</td>
<td>26.2 ± 1.53</td>
<td>8.74 ± 0.44</td>
<td>163.5 ± 8.53</td>
<td>18.04 ± 0.84</td>
<td></td>
</tr>
<tr>
<td>MTEE 500</td>
<td>1.68 ± 0.18</td>
<td>4.52 ± 0.18</td>
<td>11.48 ± 0.54</td>
<td>21.8 ± 1.49</td>
<td>5.83 ± 0.16</td>
<td>191.7 ± 12.85</td>
<td>31.85 ± 0.59</td>
<td></td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SEM; n=5 in each group comparison made with control and with standard group. Data were analyzed by one way ANOVA followed by Tukey’s multiple comparison test.

* *p < 0.05* compared to control group

* *p < 0.05* compared to standard group
histamine secretion. On the other hand, tannins and polyphenols may prevent ulcer development due to their protein precipitating and vasoconstricting effects. Their astringent action can help precipitating microparticles on ulcer site thereby forming an impervious layer over the lining that hinders gut secretions and protects underlying mucosa from toxins and other irritants and stimulate PGE2 formation. Terpenes are known to possess antiulcer activity and their action has been suggested to be due to the activation of cellular protection, reduction of mucosal prostaglandins metabolism-cytoprotective action and reduction of gastric vascular permeability. Betaine also known as glycinebetaine closely related to amino acid, glycine.

Earlier experimental studies indicated that betaine could preserve cellular and subcellular membranes from free radical mediated oxidative damage by its antioxidant activity. The ability of betaine to maintain the mucosal antioxidant status at higher rate demonstrates its possible preventive efficacy in inhibiting free radical mediated ulcerogenesis. The antiulcer activity of betaine is probably related to its ability to neutralize the hydrochloric acid secreted in to stomach and/or its antioxidant nature by which it maintains the level of GSH and the activities of the mucosal antioxidant enzymes to near normal status. Thus it protects the gastric mucosa against oxidative damage by decreasing lipid peroxidation and strengthening the mucosal barrier.

In conclusion, on the basis of the present results and available reports, it can be concluded that the anti-ulcer activity elucidated by Malvastrum tricuspidatum could be mainly due to the modulation of defensive factors through an improvement of gastric cytoprotection and partly due to decreased acid secretion. The results also supported the presence of flavonoids, tannins, and terpenes in ethanolic extract of Malvastrum tricuspidatum that are reported to possess antiulcer activity by various mechanisms like free radical scavenging, increased mucosal PGE2, increased mucosal blood flow, decreased histamine secretion, astringent action, neutralizing HCl secreted and antioxidant nature. Hence, it is suggested that Malvastrum tricuspidatum ethanolic extract show antiulcer activity by suppressing gastric damage induced by aggressive factors as well as by regulating the defensive factors.

References

Antiulcer Activity of Malvastrum tricuspidatum

CURRENT AUTHOR ADDRESSES

Neelam Balekar, College of Pharmacy, IPS Academy, Rajendra Nagar, A.B. Road, Indore- 452012, India. E-mail: neelambalekar@gmail.com (Corresponding author)

Dinesh Kumar Jain, College of Pharmacy, IPS Academy, Rajendra Nagar, A.B. Road, Indore- 452012, India.

Pankaj V. Dixit, College of Pharmacy, IPS Academy, Rajendra Nagar, A.B. Road, Indore- 452012, India.

Sandeep Singh Bhadoriya, College of Pharmacy, IPS Academy, Rajendra Nagar, A.B. Road, Indore- 452012, India.