Evaluation of Antiulcer Activity of Whole Plant Extract of *Malvastrum tricuspidatum* in Experimental Animals

NEELAM BALEKAR, DINESH KUMAR JAIN, PANKAJ V. DIXIT, and SANDEEP SINGH BHADORIYA

ABSTRACT

Malvastrum tricuspidatum is recommended in Ayurveda and Folklore Medicine for the management of gastric ulcers. Therefore, the purpose of the study was to investigate the antiulcer effect of whole plant extract of *Malvastrum tricuspidatum* (MTE) on ethanol (EtOH)-induced, aspirin (ASP)-induced, cold-restraint-stress (CRU) and pylorus–ligation (PL)-induced gastric ulcer models in rats. Aqueous extract (MTAE 250, 500 mg/kg) and ethanolic extract (MTEE 250, 500 and 1000 mg/kg) were tested orally in ethanol-induced ulcer model. The ethanolic extract (MTEE 500 mg/kg) showed better ulcer protection than aqueous extract in ethanol induced ulcer model. Hence, effective dose of ethanolic extract (500 mg/kg) was further investigated in remaining models. The ethanolic extract (MTEE at the dose of 500 mg/kg) significantly inhibited the gastric lesions induced by EtOH (82.35 %), ASP (83.10 %), CRU (84.61%) and PL (75.78%), respectively. In addition MTEE showed concomitant attenuation of gastric secretory volume, free acidity, total acidity and peptic activity in ulcerated rats. Also the phytochemical tests revealed presence of antiulcer phytochemical constituents like flavonoids, tannins, terpenes and glycinebetaine in ethanolic extract. These results suggest that ethanolic extract (MTEE) of whole plant of *Malvastrum tricuspidatum* is effective against all the four experimentally induced acute gastric ulcers.

Keywords: *Malvastrum tricuspidatum*, Antiulcer, Antisecretory, Ulcer index comma
inflammatory, analgesic, antipyretic [10,11].

Preparation of ethanolic extract

The dried coarsely powdered whole plant was extracted with petroleum ether for 48 h to remove fatty matter. The defatted marc was then subjected to soxhlet extraction with 95% ethanol for 8 h. The total ethanolic extract was concentrated using rotary evaporator. The dried extract was weighed and then kept in refrigerator until ready for use. The yield of extract was 10.5% (w/w) of powdered drug [14,15]. In each experiment, the ethanolic and aqueous extracts were suspended in sodium carboxymethyl cellulose (0.5%) before use.

Phytochemical screening

The chemical constituents of aqueous and ethanolic extracts were identified by qualitative phytochemical analysis [16-19] and quantitative phytochemical analysis [20,21].

Experimental Animals

Adult male albino rats (150-200 g) of Wistar strain and albino mice (20-30 g) were used in the study. The animals were procured from Veterinary College, Mhow (Indore), India. The animals were acclimatized for 10 days’ under standard husbandry conditions, room temperature (27 ± 3°C), relative humidity (65 ± 10%) and 12 h light/dark cycle. They were allowed free access to standard dry pelleted diet (M/s Godrej Pvt Ltd., Mumbai, India) and water ad libitum under hygienic conditions. Five rats were used for each group in antulcer study. The study was approved by the institutional animal ethics Committee, which follows the guidelines of CPSCEA (Committee for the Purpose of Control and Supervision of Experiments on Animals, which complies with international norms of INSA.

Toxicity study

Acute oral toxicity study of aqueous and ethanolic extract of the M. tricuspidatum was carried out for determination of LD50 by adapting dosing schedule as per OECD guideline no. 425. The female albino mice weighing 20-30 g were used for the study. The animals were continuously observed for 12 h to detect changes in autonomic or behavioral responses. Mortality was observed for 24 h. The doses of 250, 500 and 1000 g/Kg,
Pune. A voucher specimen (DANVIMALT5) has been assigned by Dept. of Botany, Botanical Survey of India.

Plant material

M. tricuspidatum whole plant was collected from the local garden of College of IPS academy, Indore. The plant was identified and authenticated by T. Chakraborty, Scientist ‘D’ Botanical Survey of India, Pune. A voucher specimen (DANVIMALT5) has been assigned by Dept. of Botany, Botanical Survey of India.

Preparation of extracts

Preparation of aqueous extract

The dried coarsely powdered whole plant (5 kg) was extracted with petroleum ether for 48 h to remove fatty matter. The defatted marc was then subjected to rotary evaporator. The dried extract was weighed and then kept in refrigerator until ready for use. The yield of extract was 5.2% (w/w) of powdered drug [9].
Antiulcer Activity of Malvastrum tricuspidatum

Aspirin-induced ulcers
For aspirin-induced ulcer model rats were divided into three groups. Each group contained five rats.

Group I was control and given sodium carboxymethyl cellulose (0.5 %) p.o.
Group II was standard and given ranitidine (50 mg/kg) p.o.
Group III was given ethanolic extract of Malvastrum tricuspidatum (500 mg/kg) p.o.

Cold-restraint-stress-induced ulcers
For cold-restraint-stress-induced ulcer model rats were divided into three groups. Each group contained five rats.

Group I was negative control (restraint-stress-controlled) and given sodium carboxymethyl cellulose (0.5 %) p.o.
Group II was positive control (cold- and restraint-stress-controlled) and given sodium carboxymethyl cellulose (0.5 %) p.o.
Group III was standard and given Omeprazole (20 mg/kg) p.o.
Group IV was given ethanolic extract of Malvastrum tricuspidatum (500 mg/kg) p.o.

Pylorus-ligation-induced ulcers
For pylorus-ligated ulcer model, rats were divided into three groups. Each group contained five rats.

Group I was control and given sodium carboxymethyl cellulose (0.5 %) p.o.
Group II was standard and given Omeprazole (20 mg/kg) p.o.
Group III was given ethanolic extract of Malvastrum tricuspidatum (500 mg/kg) p.o.

RESULTS

Phytochemical screening
Preliminary phytochemical screening revealed the presence of flavonoids, triterpenes, saponins, tannins, alkaloids, glycosides and carbohydrates. Animals were given sodium carboxymethyl cellulose (0.5 %), ethanolic extract of the M. tricuspidatum at dose screening were shown Table 2.

Table 1. Qualitative phytochemical analysis of aqueous and ethanolic extract of Malvastrum tricuspidatum

<table>
<thead>
<tr>
<th>Sr.no.</th>
<th>Phytochemical tests</th>
<th>Aqueous extract</th>
<th>Ethanolic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Saponins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Tannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Phytosterols</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Carbohydrates</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Proteins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Terpenoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Volatile oil</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ indicates present
- indicates absent

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control (restraint-stress)</td>
<td>---------</td>
</tr>
<tr>
<td>II</td>
<td>Pylorus ligation</td>
<td>---------</td>
</tr>
<tr>
<td>III</td>
<td>Ethanol extract (500 mg/kg)</td>
<td>---------</td>
</tr>
<tr>
<td>IV</td>
<td>Omeprazole (20 mg/kg)</td>
<td>---------</td>
</tr>
</tbody>
</table>

The results of quantitative phytochemical screening were shown Table 2.
Toxicity study

Acute oral toxicity study of aqueous and ethanolic extracts of the *M. tricuspidatum* revealed that it did not exhibit any signs of toxicity up to 2 g/kg body weight. Since there was no mortality of the animals found at high dose, doses of 250, 500 and 1000 mg/kg of the extracts were selected for evaluation of anti-ulcer activity.

Effect of MTAE and MTEE on gastric ulcer studies

Effect of MTAE and MTEE on various types of gastric ulcer models was shown in Tables 3 and 4 and Fig 1. In ulcerogen-treated animals, extensive gastric ulcers in the stomach of all the experimental models were shown. Both ethanol and cold restraint stress provoked haemorrhagic form of ulcers in the stomach with adequate evidence with intraluminal bleeding whereas aspirin caused mostly petechial ulcers and erosions. MTAE (250 and 500 mg/kg) and MTEE (250, 500 and 1000 mg/kg) given orally showed dose-dependent protective effect against gastric ulcer induced by ethanol and was comparable with omeprazole. MTEE at a dose of 500 mg/kg significantly (*p* < 0.05) reduced gastric ulcers in pylorus ligated ulcer model.

Table 2. Quantitative phytochemical analysis of aqueous and ethanolic extract of Malvastrum tricuspidatum

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>Quantity in aqueous extract</th>
<th>Quantity in ethanolic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids (%)</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Flavonoids (%)</td>
<td>12.50</td>
<td>20.50</td>
</tr>
<tr>
<td>Carbohydrates (mg/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>4.7</td>
<td>4.3</td>
</tr>
<tr>
<td>Fructose</td>
<td>5.4</td>
<td>4.56</td>
</tr>
<tr>
<td>Lactose</td>
<td>6.5</td>
<td>5.93</td>
</tr>
<tr>
<td>Maltose</td>
<td>7.47</td>
<td>6.37</td>
</tr>
<tr>
<td>Lipids (mg/ml)</td>
<td>0.208</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 3. Effect of MTAE and MTEE on EtOH-, ASP-, CRU- and PL-induced ulcers in rats

<table>
<thead>
<tr>
<th>Treatment dose (mg/kg)</th>
<th>Ulcer index</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH-induced ulcer control (EtOH)</td>
<td>22.1 ± 0.33</td>
<td>--</td>
</tr>
<tr>
<td>OMP (20) + EtOH</td>
<td>2.5 ± 0.50<sup>a</sup></td>
<td>88.68</td>
</tr>
<tr>
<td>MTAE (250) + EtOH</td>
<td>13.9 ± 0.18<sup>a</sup></td>
<td>37.10</td>
</tr>
<tr>
<td>MTAE (500) + EtOH</td>
<td>4.2 ± 0.84<sup>a</sup></td>
<td>80.90</td>
</tr>
<tr>
<td>MTEE (250) + EtOH</td>
<td>9.7 ± 0.58<sup>a</sup></td>
<td>56.10</td>
</tr>
<tr>
<td>MTEE (500) + EtOH</td>
<td>3.9 ± 0.10<sup>a</sup></td>
<td>82.35</td>
</tr>
<tr>
<td>MTEE (1000) + EtOH</td>
<td>3.7 ± 0.12<sup>a</sup></td>
<td>83.25</td>
</tr>
<tr>
<td>ASP induced ulcers control (ASP)</td>
<td>14.80 ± 0.560</td>
<td>--</td>
</tr>
<tr>
<td>Ranitidine (50)</td>
<td>1.50 ± 0.223<sup>a</sup></td>
<td>89.86</td>
</tr>
<tr>
<td>MTEE (500) + ASP</td>
<td>2.5 ± 0.220<sup>a</sup></td>
<td>83.10</td>
</tr>
<tr>
<td>Negative control (CRU)</td>
<td>0.5 ± 0.223</td>
<td>--</td>
</tr>
<tr>
<td>Positive control (CRU)</td>
<td>6.5 ± 0.353<sup>b</sup></td>
<td>--</td>
</tr>
<tr>
<td>OMZ (20) + CRU</td>
<td>0.9 ± 0.187<sup>b</sup></td>
<td>85.93</td>
</tr>
<tr>
<td>MTEE (500) + CRU</td>
<td>1.0 ± 0.220<sup>b</sup></td>
<td>84.61</td>
</tr>
<tr>
<td>PL-induced ulcers control (PL)</td>
<td>9.5 ± 0.50</td>
<td>--</td>
</tr>
<tr>
<td>OMZ (20) + PL</td>
<td>1.4 ± 0.33<sup>d</sup></td>
<td>85.26</td>
</tr>
<tr>
<td>MTEE (500) + PL</td>
<td>2.3 ± 0.25<sup>d</sup></td>
<td>75.78</td>
</tr>
</tbody>
</table>

EtOH: Ethanol; MTAE: Malvastrum tricuspidatum Aqueous extract; MTEE: Malvastrum tricuspidatum Ethanolic extract; OMP: omeprazole; ASP: aspirin; CRU: Restraint controlled ulcer; PL: pylorus-ligation.

Results are expressed as mean ± SEM; *n* = 5 in each group comparison made with control and with standard group. Data were analyzed by one way ANOVA followed by Tukey’s multiple comparison test.

^a*p* < 0.05 = compared to control group

^b*p* < 0.05 = compared to standard group
The anti-ulcer activity of the whole plant extract of *Malvastrum tricuspidatum* as evaluated by employing various models. These models represent some of the most common causes of gastric ulcer in humans. Many flavonoids, alkaloids, tannins, saponins, terpenes, amino acids, gums and mucilages are reported to possess antioxidant, cytoprotective, anti-inflammatory and antiradical properties. In phytomedicine, various phytoconstituents like flavonoids have antiulcer and gastroprotective activities. Several gastroprotective mechanisms have been proposed to explain the biological effects of *Malvastrum tricuspidatum*. The anti-ulcer extract of *Malvastrum tricuspidatum* has significantly protected the gastric mucosa against ethanol challenge as shown by reduced free radical production. Many phytochemical constituents like flavonoids have antiulcer activity and gastroprotective effect. In the cold-restraint stress model, gastric ulcer formation was mainly due to gastric hypermotility, which could lead to mucosal over friction and regeneration of free radical during stress ulcer. Ethanol extract of *Malvastrum tricuspidatum* was significantly effective in protecting gastric mucosa against cold restraint stress ulcers at the dose of 500 mg/kg as shown by reduced values of lesion index and increased mucus content as compared to control group, suggesting its potent cytoprotective and antisecretary effect. It has been proposed that in pyloric ligation, the digestive effect of accumulated gastric juice and interference of gastric blood circulation are responsible for induction of ulceration. The anti-ulcer activity of ethanolic extract of *Malvastrum tricuspidatum* at the dose of 500 mg/kg in pylorus ligation model is evident from its significant reduction in gastric volume, total acidity, free acidity, ulcer index and increase in pH of gastric juice. In animals treated with ethanolic extract of *Malvastrum tricuspidatum*, the formation of pylorus ulcer in the stomach was significantly inhibited, both acid concentration and gastric volume were decreased.

DISCUSSION

Table 4. Gastroprotective activity of ethanolic extract of whole plant of *Malvastrum tricuspidatum* on various parameters in pylorus ligated ulcer

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Volume of gastric juice (ml)</th>
<th>pH</th>
<th>Free acidity (mEq/l/100g)</th>
<th>Total acidity (mEq/l/100g)</th>
<th>Gastric mucus content (µg of alcian blue/g of stomach)</th>
<th>Total protein (µg/ml)</th>
<th>Pepsin activity (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>--</td>
<td>4.32 ± 0.25</td>
<td>2.4 ± 0.31</td>
<td>27.2 ± 2.45</td>
<td>47.4 ± 2.13</td>
<td>4.82 ± 0.11</td>
<td>286.38 ± 15.68</td>
<td>45.75 ± 1.39</td>
</tr>
<tr>
<td>OMZ</td>
<td>20</td>
<td>2.24 ± 0.19</td>
<td>3.94 ± 0.20</td>
<td>11.0 ± 0.70</td>
<td>26.2 ± 1.53</td>
<td>8.74 ± 0.44</td>
<td>165.3 ± 8.53</td>
<td>18.04 ± 0.84</td>
</tr>
<tr>
<td>MTEE</td>
<td>500</td>
<td>1.68 ± 0.18</td>
<td>4.52 ± 0.18</td>
<td>11.48 ± 0.54</td>
<td>21.8 ± 1.49</td>
<td>5.83 ± 0.16</td>
<td>191.7 ± 12.85</td>
<td>31.85 ± 0.59</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± SEM; n=5 in each group comparison made with control and with standard group. Data were analyzed by one way ANOVA followed by Tukey’s multiple comparison test.

\(^p < 0.05=\) compared to control group

\(^a p < 0.05=\) compared to standard group
Alkaloïde screening I. p. 150

Arevalo NR, Alkaloid screening I. p. 150

Dahanukar SA, Kulikarni RA. Rege NN. Pharmacology of Medicinal Plants and Natural Products. Indian J Pharmacol 2000; 32:S81-110

In conclusion, the basis of the present results and available reports, it can be concluded that the anti- ulcer activity elucidated by Malvastrum tricuspidatum could be mainly due to the modulation of defensive factors through an improvement of gastric cytoprotection and partly due to decreased acid secretion. The results also supported the presence of flavonoids, tannins, and terpenes in ethanolic extract of Malvastrum tricuspidatum that are reported to possess antiulcer activity by various mechanisms like free radical scavenging, increased mucosal PGE2, increased mucosal blood flow, decreased histamine secretion, astringent activity, neutralizing HCl secretion and antioxidative nature. Hence, it is suggested that Malvastrum tricuspidatum ethanol extract show antiulcer activity by suppressing gastric damage induced by aggressive factors as well as by regulating the defensive factors.

References

4. Secretary Properties of the Emblica rotundus rhizome in Pylorus ligated Rat model.
Antiulcer Activity of Malvastrum tricuspidatum

